
ALGOL W

REFERENCE MANUAL

BY

RICHARD L. SITES

STAN-CS-71-230

FEBRUARY, 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

ALGOL W

REFERENCE MANUAL

RICHARD L. SITES

FEBRUARY, 1972

This manual refers to the version of t: e Algol W

compiler dated 16 January 1972.

1

"A Contribution to the Development of ALGOL" by Niklaus Wirth and

C. A. R. Hoare!! was the basis for a compiler developed for the IBM 360 at

stanford University. This report is a description of the implemented

language, ALGOL W. Historical background and the goals of the language

may be found in the Wirth and Hoare paper.

HISTORICAL NOTE

This document is a major revision of and supersedes CS 110. The revisions

were made in order to document a significantly improved version of the ALGOL W

compiler. This version was known as X ALGOL W during the spring and swnmer

of 1971. In addition to new debugging facilities documented under Compiler

Options, the new version of the compiler has slightly more meaningful error

messages documented in the completely re-written Error Messages section.

Various minor corrections and changes have been made throughout the book,

and same examples have been added. There is now an index, and a complete

list of all words the compiler treats in any special way. Below is a quick

summary of the changes in the ALGOL W language:'

1. Reserved words:

There are three new reserved words: algol, assert, and fortran.

2. New statements and functions:

There is now an ASSERT statement (cf. Section 7.5a).

Procedures can be declared with empty bodies that instead specifY that

a linkage to an externally-compiled algol or fortran procedure is needed

(cf. Section 5.3). A new standard function, TRACE, is added as part

of the debugging facility (cf. Section 7.8.6).

11 Wirth, Niklaus and Hoare, C. A. R., "A Contribution to the Development
of ALGOL", Camm. ACM 9, 6 (June 1966), pp. 413-431.

2

3 ~ Conversions:

Conversions from integer to real now go to long real.

4. String comparisons:

In comparing strings of different lengths, the shorter is extended

with blanks before the comparison is done.

5. string assignments:

String assignments are done in a single action, instead of character

by-character le:rt-to-right. This prevents erroneous answers when

assigning a string to a substring of itself.

6. Deleted facility:

The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT are no

longer in the ALGOL W library. (cf. Deck Setup and Compiler

Options, Section 3, for use of the Fortran library.)

The present author wishes to thank all thos'e who have gone be:fore him,

especially Ed Satterthwaite for his extraordinary care in buildine the

debugging facilities.

Table of Contents

LANGUAGE DESCRIPI'ION

1.

2.

3.

4.

5·

6.

TERMINOLOGY, NOTATION AND BABIC DEFINTIIONS ..•••.•••.••••.•

1.1

1.2

Notation

Definitions ,
SETS OF BABIC SYMBOLS AND SYNTACTIC ENTITIES

2.1

2.2

Basic Symbols

Syntactic Entities

IDENTIFIERS

VALUES AND TYPES ... " ..
4.1

4.2

4.3

4.4

4·5

Numbers

Logical Values

Bit Sequences ...
Strings ...
References ..

DECLARATIONS ...
Simple Variable Declarations
Array Declarations
Procedure Declarations

Record Class Declarations

EXPRESSIONS ..
Variables ...
Function Designators

••••• e .•••••••••••••••••••••••••• Arithmetic Expressions

Logical Expressions
Bit Expressions

8

8

8

11

11

12

13

16

17

18

18

19

20

20

20

22

23

28

28

30

31

32

37

38

6.1

6.2

6.3

6.4

6.5

6.6 String Expr>essions •..•••.••••..•••••.• >. . • • • • • • . • • . • • •• 39

4

7.

8.

1.

6.7

6.8

Referenc e Expres s ions ••••••••••••••••••.•••••••••••

Precedence of Operators

STATEMENTS ..
Blocks ...
Assignment Statements

Procedure Statements

Goto Statements

If Statements
7.5a Assert Statements

Case Statements
Iterative Statements

Standard Procedures

The Input/Output

Read Statements

Write Statements

System 7·8.1

7.8.2

7.8.3

7.8.4

7.8.5

7.8.6

Control Statements

Exaznples•.......•..............•••..

Trace

STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

Standard Transfer Functions

Standard Funct ions of Analys is
8.1

8.2

8.3

8.4

8.5

Time Function ••••••••••••••••• e .••••••••••••••••••••

Predeclared Variables

Exceptional Conditions

APPENDIX

CHARACTER ENCODmG

5

40

41

42

42

43

45

47

48

49

50

51

53

54

56

57

58

59

59

W

ffJ

62

64

64

65

71

ERROR MESSAGES

1. PASS ONE ERROR MESSAGES

2. PASS TWO ERROR MESSAGES

................................. 73

75

3. PASS THREE ERROR MESSAGES ••••••••••••••••••••••••••••••• 80

4. LOADER ERROR MESSAGES ••••••••••••••••••••••••••••••••••• 82

5 • RUN -TIME ERROR MESSAGES ••••••••••••••••••••••••••••••••• 83

6. ABEND MES SAGES •• 87

~ER REPRESE::NTATION ••• 88

DECK SETUP AND COMPILER OPrIONS

1 • DECK S EIDP ••••••••••••.••••••••••••••••••••••••••••••••• 10 :3

2. COMPILER OFrIONS •• 104

3. LINKAGE TO SEPARATELY -COMPILED PROCEDURES ••••••• ~ • • • • • •• 107

3.1 Compiler Organization ••••.•.••••.••••.•....•.••.•.• 107

3.2 Control Cards for Using OS/3tIJ Loader •••.•.••.•••.• 110

3.3 Calling External Procedures ••.•.••.•.••••.•.••.•... 110

4 • CO~LER OUTRJT •••.••.•.•..•.•.••••.•• ~ •.•.••. 0 • • • • • • • •• ill

4.1 Introduct ion •.••.•.•.•••••...•.••.•.••...••••.•.•.• ill

4.2

4.1.1 Source Card Listing ..•.•..•.•....••.•.•.•.•• ill

4.1.2 Error Mes sages •.•••••.•..•.•..•.••••.•.••..• 112

4.1.3 Compile Time and Amount of Code •••••.•••••.. 112

4.1.4 Run-time and Tracing Output •••...••••.••...• 113

4.1.5 Statement Counts .•••.•.•••••••••.•.••••••.•• 113

4.1.6 Post-mortem Dump

Details of the Tracing

4.2.1 Basic Notations

Otltput ••.•.•••••.••••.••••••

4.2.2 Procedure Call Notations

113.1

119

119

120

4.3 Details of the Post-mortem Dump .•..•.•.••.•.•...••• 125

GRAMMATICAL DESCRIPTION OF ALGOL W •••••••••••••••••••••••••••••••• 128

INDEX ••• l40

WORDS WITH SPECIAL MEANINGS IN ALGOL W

6

............................ 141

6.1

ALGOL W

LANGUAGE DESCRIPTION

by

Henry Bauer

Sheldon Becker

Susan L. Graham

Edwin Satterthwaite

Richard L. Sites

7

1. TERMINOLOGY

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by

a for.mal metalanguagee This metalanguage makes use of the notation and

definitions explained below. The structure of the language ALGOL W

is determined by:

(1) V, the set of basic constituents of the language,

(2) lA, the set of syntactic entities, and

(3) P, the set of syntactic rules, or productions.

1.1, Notation

A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

'<./C> ~: = x

where <A> is a member of ti, x is any possible sequence of basic con

stituents and syntactic entities, simply to be called a "sequence".

The form

<Ii> :: = l< I y I ... I z

is used as an abbreviation for the set of syntactic rules

<Ii> :: = x

<A> ::=Y

<Ii> ::= z

1.2. Definitions

1. A seq~ence x is said to directly produce a sequence y it and

8

TERMmOLOGY

only if there exist (possibly empty) sequences u and w, so t~at

either (i) for some <A> in U, x = u<A>w, Y = uvw, and <A> ::=

v is a rule in P; or (ii) x ~ uw, y = uvw- and v is a "comment"

(see below).

2. A sequence x is said to produce a. sequence y if and only if'

there exists an ordered set of sequences s[O], s[l], ..• , ern],

so that x = s[O], s[n] = y, and s[i-l] directly produces s[i] for

all i : 1, ... , n.

3. A sequence x ~s said to be an ALGOL W program if and only if

its constituents are members of the set Y, and x can be produced

from the syntactic entity <program>.

The sets V and U are defined through enumeration of their members

in Section 2 of this Report (cf. also 4.4.)." The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactlc entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words which have appeared in this manner are used elsewhere in the

text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol r may occur. It is understood

that this symbol must be replaced by anyone of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol r within one syntactic rule

must be replaced consistently, and the repl~cing words are

9

integer

real

long real

complex

lcng complex

logical

bit

string

reference

For example, the production

<.j term> :: = <r factor> (cf. 6.,.1.)

corresponds to

<into eger t enn>

<real term>

<Long real term>

<complex term>

<Long complex term>

The production

< j 0 primary>

corresponds to

· .-· .-

· ... -

<integer factor>

<real factor>

<long real factor>

<complex factor>

<long complex factor>

.. -.. - long < j 1 primary>

: : = long < real primary>

1. TERMINOLOGY

(cf. 6., .1. and
table for long
6.,.2.7.) -

<long real primary>

<long real primary> : : = long < integer primary>

<long complex primary> :: = long <complex primary>

It is recognized that typographical entities exist of lower order

tha.n basic symbols, called characters. The accepted characters are

those of t.he IBM System ,60 EBCDIC code.

The symbol comment followed by any sequence of characters not

containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. ,.1.) immediately

10

I

2. SYMBOLS

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these units of action is defined as

the evaluation of expressions and the execution of statements as

denoted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) defined

by System 360 operations, e.g., real arithmetic, or (2) left undefined,

e.g., the order of evaluation of arithmetic primaries in expreSSions,

or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

ABC D E

Q R STU

o 1 2 3 4

F G HI JIKILIMINlolpl
V w X y zl

5 6 789

~ I false I tt I null I fit
integer I real I complex I logical I bits I string

reference I long ~ I long complex I array I
procedure I record I
, I ; I : I · I (I) I begin I end I if I then I else

~ I of I + I - I * I / I '** I div I ~ I ~ I shl I is

~ I long I short I ~ I £!:. I, I I I = I, = I < I
< = I' > I > = I :: 1
:= I goto I go to 1 for I step I until I do I while I
eamnent I value I result I assert \ ~ , fortran

All underlined words, which we call "reserved words", are represented

by the same words in capital letters in an actual program, with no

intervening blanks.

II

2. SYMBOLS

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list>

<actual parameter>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit terrI".>

<block body>

<block head>

<block>

<bound pair list>

<bound pair>

<case clause>

<case statement>

<control identifier>

<declaration>

<digit>

<dimension specification>

<empty>

<equality operator>

<expression list>

<field list>

<for clause>

<for list>

<formal array parameter>

<formal parameter list>

<formal parameter segment>

7·3
7.3
6.5
6.5
6.5
4.3
6.5

7·1
7.1

7·1
5.2

5.2

6

7.6

3·1

5
, 3.1

5.3

7
6.4

6·7
5.4

7·7
7·7
5·3
5.3
5.3

12

<formal type>

<go to statement>

<hex digit>

<identifier list>

<identifier>

<if clause>

<if statement>

<imaginary number>

<increment>

<initial value>

<iterative statement>

<label definition>

<label identifier>

<letter>

<limit>

<logical element>

<logical factor>

<logical primary>

<logical term>

<logical value>

<lower bound>

<null reference>

<procedure declaration>

<procedure heading>

<procedure identifier>

<procedure statement>

<program>

5.3
7.4
4.3

3·1
3.1

6

7·5
l~.l

7.7

7·7
7·7
7·1
3.1

3.1

7·7
6.4
6.4

6.4

6.4

4.2
5.2

4.5
5.3

5·3
3·1

7·3
7

,

:; • IDENTIFIERS

<proper procedure body.> 5·3
<proper procedure

decl~ation> 5.3
<record class declaration> 5.4
<record class identifier> 3.1
<record class identifier

list> 5.1
<recorQ designator> 6.7
<relation> 6.4
<relational operator> 6.4
<scale factor> 4.1

<sign> 4.1
<simple bit expressio~> 6.5
<simple logical expression> 6.4
<simple reference

expression> 6·7
<simple statement> 7

<simple string expression> 6.6
<simple r expression> 6.3
<simple 1 variable> 6.1
<simple type> 5.1
<si~ple variable

dcclexation> 5.1
<statement list> 7.6
<statement> 7

<stri ng primary> 6.6

<string> 4.4
<subarray designator list> 7.3
<subscript> 6.1

3. IDENTIFIERS

3.1. Syntax

<subscript list>
<substring designator>
<1 array deciaration>
<j array de8fgna~or>

<1 array identifier>

<1 assignment statement>

<1 expression lis~

<1 expression>

<1 factor>

<1 field designator>

<1 field identifier>

<1 function designator>

<1 function identifier>

<1 function procedure body.>

<1 function procedure
declaration>

<1 left part>

<1 number>

<1 pr imary.>

<1 subarray designator>
<r term>
<r variablp>
<1 variable ldentifier>

<unsealed real>

<upper bound>

<while clause>

6.1
6.6
';.2
6.1
,.1
7.2
6
6
6.,
6.1

3·1
6.2
,.1
5·3

5·3
7·2
4.1

6·3
7·3 6.,
6.1
3·1
4.1

5·2
7.7

.
<identifier> :: = <letter> I <identifier> <letter.> I <ident1f1e~ <digit> I

<identifier>

<1 variable identifier> :: = <identifier>

13

<1 array identifier.> ::~ <identifier>

<procedure identifier> ::= <identifier>

<1 function identifier> : : ~ <identifier>

<record class identifier> ::= <identifier>

<1 field identifier> <j d~ntifier>

<label identifier> :~= <identifier.>

<control identifier~ <identifier'>

<letter> .. - A 1 B I c I D I E I F I G I H .. -
N I 0 I p I Q I R I S I T I u

<digi t> . ,. - 0 I 1 I 2 I , I 4 I 5 I 6 , 7

:3 • IDENTIFIERS

I I , J K I L M

I V I w X I· y Z

I 8 I 9

<identi.fier liet> '" ,,- <.identifier> I <identifier list> , <identifier>

3. 2 . Semantics

Variables, arrays, procedures, record classes and record fields

are said to be quantities. Identifiers serve to identify quantities,

or they $tand as labels, formal parrumeters or control identifiers.

Id~nt,i flers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined. This is

achieved through

(a) a 0 p claration (cf. Section 5), if the identifier identifies a

qualltity. It is then said to denote that quantity and to be a

r variable identifier, 1 array identifier, j procedure identifier,

j function identifier, record class identifier or j field iden-

lif'i.er, where the symbol j stands for the appropriate word re-

f'lecting the type of the declared quantity;

\b) a label definition (cf. 7.1.), if the identifier stands as a

14

3. IDEM'IFIERS

label. It is then said to be a label identifier;

(c) its occurrence in a formal para,meter list (cf. 5.3.). It is th~n

said to be a formal parameter;

(d) its occurrence fo110\'iing the symbol for in a for clause (cf. '(.'/.).

It is then .said to be a con~rol i~entifier;

(e) its implicit declaration in the language. Standard procedLU'es,

standard function.s, and predefined variables (cf. 7.8 and 8) may be

considered to be declared in a block containing the prograrll.

The recognition of the definition of a given identi1'ier iG

determined by the following rules:

Step 1. If the identifier is defined by a declaration of ~

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is consiri.(~red

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a fonnal parameter in the asso

cia ted procedure heading, the.n it stands as that formal pa :-ame tf{r ,

Step 3. Otherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block em?racing the block which has previously been considtrcd.

15

4. VAllJES and TYPES

If either step 1 or step 2 could lead. to more than one definition,

then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a

control identifier is the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Examples

I

PERSON

ELDERSIBLING

X15, X20, X25

1+. VAlDES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.

Tne value of a constant is determined by the denotation of the constant.

In tl1e language, all constants (except references) have a

reference denotation (cf. 4.1. - 4.4.). The value of a variable is the

one most recently aSSigned to that variable. A value is (recursively)

defined as either a simple value or a structured value (an ordered set

of one or more values). Every value is said to be of a certain type.

7he following types of simple values are distinguished:

integer: the value is a 52 bit integer,

real: the value is a 32 bit floating point number,

long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type ~,

16

~

long ccmplex: the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,

bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256
characters,

reference: the value is a reference to a record.

The following types of structured values are dist inguishe.d:

array: the value is an ordered set of values, all of
identical simple type,

record: the value is an ordered set of simple values.

f procedure may yield a value, in which case it is said to be a

function ~rocedure, or it may not yield a value, in which case it is

called a proper procedure. The value of a function procedure is

defined as the value which results from the execution of the procedure

body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence Df

characters. This, however, does not imply that the value of the

denoted constant is a sequence of characters, nor that it has the

properties of a sequence of characters, except, of course, in the case

of strings.

4.1. N'Wllbers

< long canplex number> :: = <complex number>L

< complex number> :: = <imaginary number>

< imaginary number> :: = <real number>! I <integer number>!

17

4. VALUES and TYPES

<long real number> :: = <real number>L I <integer number>L

<real number> ::= <Unscaled real> I <Unscaled real> <scale factor>

<integer number> <scale factor> I <scale factor>

<Unscaled real> ::= <integer number> · <integer number> I
. <integer number> I <integer number>.

<scale factor> ::= '<integer number> I '<sign> <integer number>

<integer number> ::= <digit> I <integer number> <digit>

<S ign> :: = + I -
(Note: a long complex constant may have the I and L in either order

in a program, but they must be in the order IL on data cards.)

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined tYJ;)e. (Note that all <1 number>s are

unsigned.)

4.1.3. Examples

1 ·5
0100 1'3
3.1416 6.02486'+23

2.7l828l828459045235360287L

4.2. Logical Values

4 .2 .1. Synt ax

<Logical value> ::= true false

4.3. Bit Sequences

4.3.1. Syntax

II

0.67I
IlL

2.3'-6

<'bit sequence> ::= 41= <hex digit> \ <bit sequence> <hex digit>

18

<l1ex digit> :: = 0 1 2 3 I 4 I 5 I 6 I 7 I 8 I 9 I A I B I
C D E F

Note that 2 , ••• 'F corresponds to 210 , ••• , 1510 .

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justif.ied in the word and zeros filled in on the 1ei~.

It.3 .3.. Examples

f4F = 0000 0000 0000 0000 0000 0000 0100 llll

19 = 0000 0000 0000 0000 0000 0000 0000 1001

4.4. strings

4.4.1. Synta.x

<string> "<S'equenceaf characters>"

4.4.2. Semantics

Strings consist of any sequence of (at most 256) characters

accepted by the System 360 enclosed by tf, the string quote. If the

stri.ng quote appears in the sequence of characters it must be immediately

i'oJJ.owed by a second string quote which is then ignored. The number of

characters in a string is said to be the length of the string.

4.4.3. Examples

"JOHN"
"tttltt is the string of length 1 consisting of the string quote.

19

5 • D~LARATIONS

t~ .5. Refer~nces

4.).1. Syntax

<nuLl reference~ nltJl ---'---

4.5.2. Semantics

The reference value ~ falls to dc'signate a r~C'ord; if a refer

ence expression occurring in a field ~esign~tor (cf. 6.1.) has this

value, then the field designator is undefine~.

) . PECLARATIONS

Declarations serve to assoc iate identifiers wi.th trle quantities

used in the program, to attribute certain permanent properties to

these quantities (e.r,. type, structure), and to determjne their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defi.ned within

that block lose their value and significance (cf. 7 .. :.2. and 7.4.2.).

<r1e~laration> <simple variable declaration> I <T array

d~claratjon~ I <procedure declaration>

<record class deciaration>

5 .1. Simple V~riable Declarati.ons

5·1.1. Syntax

<5 imp1e varia.ble decl~.ration> ~ ~ =. <simple type> ~identifier list>

<simple type> : ::.= intege~. Feal I long ~ I ,complex long

,com21Ex logi cal I ~ I bits (32) I
i

20

5. D~LARATIONS

string I string «integer'number» I reference

«record class identifier list»

<record class identifier list> . '.. - <record class identifer> I
<record class identifier list>

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a

variable which is declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable is declared to be of' a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It is understood that the value of a variable

is equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not

the declaration specification is ~cluded.

A variable of type string has a length equal to the unsigned

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K, M, N

real X, Y, Z

long comElex C

lo~ical L

bits G, H

21

5. DECLARATIONS

string (10) S, T

reference (PERSON) JACK, JILL

5.2. Array Declarations

5.2.1. Syntax

<1 array declaration> .. -.. - <simple type> array <identifier list>

(<bound pair list»

<bound pair list> :: = <bound pair> I <bound pair list>, <bound pair>

<bound pair> :: = «l.ower bound> :: <upper bound>

<lower bound>

<upper bound>

5.2.2. Semantics

<integer expression>

<integer expression>

Each identifier of the identifier list of an array declaration is

associated with a variable which is declared to be of type array. A

variable of type array is an ordered set of variables whose type is the

simple type preceding the symbol array. The dimension of the array is

the number of entries in the bound pair list.

Every element of an array is identified by a list of indices. The

indices are the integers between and including the values of the lower

bound and the upper bound. Every expression in the bound pair list is

evaluated exactly once upon entry to the block in which the declaration

occurs. The bound pair expressions can depend only on variables and

procedures global to the block in which the declaration occurs. In order

to be valid, for every bound pair, the value of the upper bound must not

be less than the value of the lower bound.

5.2.3. Examples

integer array H(l::lOO)

22

5. DmLARATIONS

I

real array A, B(l: :M, 1: :N)

string (12) array STREET, TOWN, CITY (J::K + 1)

5.3. Procedure Declarations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaration> \

<1 fUnction procedure declaration>

<proper procedure declaration> ::= procedure <procedure heading>;

<proper procedure body>

<T function procedure declaration> :: = <simple type> procedure

<procedure heading>;

<1 function procedure body>

<proper procedure body> ::= <statement> \ <external procedure>

<1 fUnction procedure body> ::= <1 expression> \ <block body>

<1 expression> end \ <external procedure>

<procedure heading> :: = <identifier> , <identifier> (<formal

parameter lis~»

<formal parameter list> ::= <formal parameter segment> ,

<formal parameter list> ; <formal

parameter segment>

<formal parameter segment> :: = <formal tYI>e> <ident ifier list> I
<formal array parameter>

<formal tY]?e> ::= <simple tYI>e> I <simple tYI>e> value I <simple

type> result I <simple type> value result ,

<simple tYI>e> procedure I procedure

<formal array parameter> ::= <simple type> array <identifier

list> «dimension specification»

<dimension specification> ::= * \ <dimension specification> , *
<external procedure> :: = fortran <string> \ algol <string>

5.3.2. Semantics

A procedure ieclaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

23

5. DEX:!LARATIONS

part of the procedure dE!clnration is the procedure body. Other parts

of the block in whose heading the procedure is declared can then CRuse

this procedure body to be executed or evaluated. A proper procedure

is activated by a prc'cedure statement (cf. 7.3.), a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3. 2 .1. Type specification of formal parameters. All formal para

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3. 2 .).

5 .3. 2 .2. The effect of the symbols value and result 'appearing in a

formal type is explained by tqe following rule, which is applied to

the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;

(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after

the first begin of the procedure body, with a stmple

type as indicated in the formal type, and with an iden

tifier differ·ent from any identifier valid at the place

of the declaration.

(b) throughout the procedure body, every occurrence of the

24

5. D~LARRrIONS

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon is inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expression

consists of the formal parameter identifier. The symbol

value is then deleted;

(4) If tne formal type contains the symbol result, an assignment

statement preceded by a semicolon is inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of the function procedure body. Its left part contains the

formal parameter identifier, and its expression consists of

the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. SpeCification of array dimensions. The number of "*"'s

appearing in the formal array specification is the dimension of the

array parameter.

5.,.2.4. External procedures. The body of a procedure can be just the construct

fortran <string>

or the construct

algol.<Btring> •

25

5. DECLARATIONS

In these cases, the actual body of the procedure is specified in a program

that is compiled separately (externally). The <string> is a one-to-eight

character external name that is used in the separate compilation. Thus, the

example on page 27 could be used to refer to a FORTRAN program that begins:

SUBROUTINE PLOTSB(N) ..•

(cf. Deck Setup and Compiler Options, Section 3 for details).

5.3.3. Examples

procedure INCREM:ENT; X := X+I

real procedure MAX (real value X, Y);

if X < y then Y els e X

procedure COPY (real array U, V (*,*); integer ~ A, B);

for I .- I until A do

for J .- I until B do u(r,J) := v(r,J)
!eal procedure HORNER (real array A (*); integer value N;

real value X) ;

begin real S; S := 0;

end

for I .- 0 until N do S .- S * X + A(I);

S

long real procedure SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := N;

while K > = I do

end

begin Y : = Y + X; K . - K - I

end;

Y

26

reference (PERSON) procedure Y<XJNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

end

P := YOUNGESTOFFSPRING (FATHER (FATHER (it)));

while (p -, = null) and (-., MALE (p)) £!:.

(p = FATHER (R)) do

P : = ELDERSIBLING (p);

M : = YOUNGESTOFFSPRING (MOI'HER (MOTHER (R)));

while (M -, = null) ~ (-., MALE (M)) do

M : = ELDERSIBLING (M);

if P = null then MeIse

if M = null then P else

if AGE(P) < AGE(M) then P else M

I Erocedure PLOTSUBROUTINE (int ee;er value I); fortran "PLOTSB"

27

6. EXPRESSIONS

5,4, Record Class Declarations ------
5.4,1. Syntax

<record class declaration> ::= record <identifier~ «field list»

<field list> ::= <simple variable declaration> I <field list> ;

<simpl.e variable declaration>

5.4.2. Semantics

A record class declaratiqn serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration is a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

~o construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the

operatinns indicated by the operators on the values of the operands.

The operands are either constants, variables or function designators,

or other expressions, enclosed by pa.rentheses if necessary. The evalu-

at:ion of operands other than constants may involve smaller units of

28

b. EXPRESSIONS

action such as the evaluation of other expressions or the execut ion of'

statements. The value of an expression between parentheses is obtained

by evaluating that expression. If an operator has two operands, then

these operands may be evaluated in any order with the exception of the

logical operators discussed in 6.4.2.2. Several simple types of

expressions are distinguished. Their structure is def:ined by the following

rules, in which the symbol 1 has to be replaced consistently as described

in Section 1, and where the triplets 10 , 11 , 12 have to be either all

three replaced by the same one of the words

logical

bit

f?tring

reference

or by any combination of words as indicated by the following table~

which yields given

11
12

integer

integer integer

real real

complex complex

1-1

real

real

real

complex

complex

complex

complex

complex

10 has the quality "long" if either both 11 and 12 have that

quality, or if one has that quality and the other is "integer".

Syntax:

<1 expression> ::= <simple 1 expression> \ <case clause>

«1 expression list»

<10 expression> :: = <if clause> <11 expression> else

<12 expression>

<1 expression list> ::= <1 expression>

< 10 expression list> :: = < 11 expression list>, < 12 expression>

<if clause> ::= if <Logical expression> then

<case clause> :: = ~ <integer expression> of

29

b. EXPRESSIONS

The construction

<if clause> <11 expression> else < 12 expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value is true, the expression following the if clause is selected;

if the value is false, the expression following else is selected. If

11 and j2 are sim~le type string, the shorter expression will be padded

on the right with blanks to make it the length of the longer one. The

construction

<case clause> «1 expression list»

causes the selection of the expression whose ordinal number in the

expression list is equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list. If j is simple type string,

the string expressions will be padded on the right with blanks to rnake

all alternatives the length of the longest one.

Examples of expressions

x -I A*B COLUMN rem 5

if X=3 then y+ 37 else Z*2.1

~ I of (3.14, 2.78, 448.9)

(x+Y)**3 long abs BALANCE

case DEX::!ODE(C)-128 of ("A", "Btt, "C", "D", "Eft, "F")

6 .1. ' Variables

6.1.1. Syntax

<Simple 1 variable> < j variable identifier> I <1 field designat.or> I
< j array des ignat or>

< j variable> :: = <simple j variable>

<string variable> ::= <substring designator>

<j field deSignator> - <1 field identifier> (<reference expression»

< j array deSignator> - < j array identifier> «subscript list:»

<subscript list> :: = <subscript> I <subscript list>, <subscript>

<subscript> ::= <integer expression>

30

6. EXPRESSIONS

6.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

is defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

x A(1)

FATHER (JACK)

6.2. Function Designators

6.2.1. Syntax

M(I+J, 1-J)

MOTHER(FATHER(JILL»)

<1 function designator> ::= <1 function identifier> I <1 function

identifier> (<actual parameter list»

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the functi0n designator

and of the actual parameters of the. latter.

Steps 2, 3, 4. As specified in ., .;<L2.,

31

6. EXPRESSIONS

Step 5. The copy of the function procedure body, modified as indicated

in steps 2-4, is executed. Execution of the expression which constitutes

or is part of the mOdified procedure body consists of evaluation of that

expression, and the resulting value is the value of the function desig-

nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

6.2.3. Examples

MAX (X ** 2, Y ** 2)
SUM (I, 100, H(1»

SUM (I, M, SUM (J, N, A(I,J»)

YOUNGESTUNCLE (JILL)

SUM (I, 10, X(I) * Y(I»

HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rUles, every occurrence of the symbol j

must be systematically replaced by one of the following words (or

word pairs):

int,eger

real

long real

complex

long complex

The rules governing the replacement of the symbols 1 o' 1 1 and j 2 are

given in 6.3.2.

<Simple 1 expression> :: = < T term> I + < j term> I - < j term>

32'

6. EXPRESSIONS

<simple j 0 expression> .. - <Simple j 1 expression> + <12 term>

<Simple 11 expression> - <12 term>

<1 term>

<To term>

<10 term>

: : = <1 factor>

.. -- <11 term> * <12 factor>

.. - <11 term> / <12 factor>

<integer term> <integer term> div <integer factor>

<10 factor>

<10 primary>

<10 primary>

< 1 0 primary>

<1 primary>

<integer term> ~ <integer factor>

.. - < 10 primary> , <1 1 factor> ** <integer primary>

· • - ab s < j 1 primary>

· . - long < 1 1 prjmary>

· . - short < 11 primary>

::= < 1 variable> 1 <1 fUnction designator>

«1 expression» , < 1 number>

<integer primary> ::= <control identifier>

6.,.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, *, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols 1
0

, 11 and 12 have to be replaced

by any combination of words according to the following table which

indicates 10 for any combination of 11 and 12 • (Also see page 134.)

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of Sign inversion. The type of

the result is the type of the operand. The operator U+" standing as the

first symbol of a s:i1nple expression denotes the monadic operation of

identity.

33

6. EXPRESSIONS

The opernt,or div is mathematically defined (for B f 0) as

A div B = SGN (Ax B) xD (abs A, abs B) (cf. 6.3.2.6.)

A and B both must be integer expressions.

For the purpose of the definition above, SGN and D mean

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A-B, B) + 1

6.3.2.4. The operator r~ (remainder) is mathematically defined 8.8

A ~ B = A - (A div B) X B

A and B both must be integer expressions.

The operator ** denotes exponentiation of the first operand

to the power of the second operand. In the relevant. syntactic rule of

6.3.1. the symbols 10 , 11, and 12 are to be replaced by some combination

of words from the table below. If the value of the exponent, N, is

positive, then the first operand is multiplied by itself N times; if N

is negative, the expression is evaluated as l/(first operand**(-N»;

if N is zero, the result is always 1. If the first operand is zero and

the second operand is negative, then division by zero will result. Note

that -l**N is parsed as -(l**N); use (-l)**N instead. To force something,

like I**J (where I > 0 and J ~ 0) to be an integer, use TRUNCATE(I**J) .

6.3.2.6. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntact ic rule of 6.3 .1. the symbols 1 r,
,}

and 11 have to be replaced by the same types.

Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex

34

\..!. lJiLJ:J.,\J.:JI...JIJ..L.V.LV""

then it is the mathematically understood result of' the operation

performed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols 1
0

, 1
1

, and 12

must be replaced by any of the combinations of words (or word pairs)

in the tables below.

Operators + \ -

integer

real

long real

complex

long complex

Operator *

integer

real

complex

integer real long real complex

integer real long real complex

real real real canplex

long real real long real complex

canplex canplex complex complex

long complex complex long complex complex

integer real complex

integer long real long complex

long real long real long complex

long complex long complex long complex

long complex

long complex

complex

long complex

complex

long complex

j 1 or j 2 having the quality "long" does not affect the type of the result.

Operator /

integer real long real complex long complex

integer long real real long real complex long complex

real real real real complex complex

long real long real real long real complex long complex

complex complex complex complex complex complex

long complex long complex complex long complex complex long complex

35

b. EXPRESSIONS

Table of values for div and ~ operators

I J I div J I~J

10 2 5 0
11 2 5 1
10 -2 -5 0
11 -2 -5 1

-10 2 -5 0
-11 2 -5 -1
-10 -2 5 0
.. 11 -2 5 -1

Operator **
j2

integer

integer long real

real long real

long real long real

complex long complex

long complex long complex

Operator long

"0 11

long real integer

long real real

long real long real

long complex complex

long complex long complex

Operator short

10 11

real integer

real real

real long real

complex complex

complex long complex

C + A(I) * B(I)

EXP (-xl (2* SIGMA)) / SQRT (2 * SIGMA)

36

6. EXPRESSIONS

6.4. Logical Expressions

6.4.1. Syntax

In the following rules for <relation> the symbols ! 0 and ! 1 must

either be identically replaced by anyone of the following words:

bit

string

reference

or by any of the words from:

canplex

long complex

real

long real

integer

and the symbols 12 or 13 must be identically ~eplaced by string or

must be replaced by any of real:, long real~ intep:er.

<simple logical expression> : : = <logical element> 1 <relatiort>

<logical element> : : = <logical tern£> I <logical' element> £!:

<logical terDt>

<logical term> :: = <logical factor.> I <logical ternt> ~

<logical factor>

<logical factor.>

<logical primary>

: : = <logical primary:> I ..., <logical primarp

:: = <logical value> I <logical variable> I
<logical function designator.> I
«logical expression»

<relation> : : = <simple j 0 expression> <equality operat~

<s imple j 1 expression> I <logical element>
<equaLity opera~or><logical element> I
<simple reference expression> 1!
<record class identifier> I
<simple r~ expression> <relational operator>

'-

<s~ple 1} express1ol~

<relational. operator> : := < 1 < = I > .. I >
<equaJ.lty operator> ::= = I -, =

5.4.2. Se~Antics

A logical expression is a rule for camppting a logical value.

31

h. EXPRESSIONS

l,.1t.2.l. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string is first

extended to the right with blanks. The relational operators yield the

logical value true if the relation is satisfied for the values of the

two operands; false otherwise. Two references are equal if and only if

they are both null or both refer to the same record. The operator is

yields the logical value true if the reference expression designates a

record of the indicated record class; false otherwise. The reference

value null fails to designate a record of any record class.

6.4.2.2. The operators I (not), and, and~, operating on logical

values, are defined by the following equivalences:

IX

X and Y

X or Y

6.4.3. Examples

P££Q

if X then false else true

if X then Y else false

if X then true else Y

(X < Y) and (Y < z)
YOUNGESTOFFSPRING (JACK) I = null

FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Syntax

<Simple bit expression> ::= <bit term> I <simple bit expression>

or <bit term>

<bit term> ::= <bit factor> I <bit term> and <bit factor>

<bit factor> ::= <bit secondary> I I <bit secondary>

<bit secondary> ::= <bit primary> I <bit secondary> shl

<bit primary>

<integer primary> I <bit secondary> shr

<integer primary>

<bit sequence> 1 <bit variable> I <bit

function designator> I (<bit expression»

38

6. EXPRESSIONS

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, ~, and I produce a result of type b~ts, every

bit being dependent on the corresponding bites) in the operand(s) as

follows:

X y IX X and Y X or Y

a 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

The operators shl and shr denot.e the shifting operation to the

left and to the right respectively by the number of bit positions

indicated by the absolute value of the integer primary.. Vaeated bit

positions to the right or left respectively are assigned the bit

value O.

Examples

G and H £!: 138
G and -, (H £!: G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> I <string variable> I <string

function designator> l «string expression»

<substring designator> ::= <simple string variable>

«integer expression>' <integer number»

(The I stands for the vertical bar character I.)

39

6. EXPRESSIONS

6.6.2. Semantics

A string expression is a rule for computing a string (s~quence of

character s).

6.6.2.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

preceding the I selects the starting character of the sequence~ The

value of the expression indicates the position in the string variable.

The value must be greater than cr equal to 0 and less than the declared

length of the string variable. The first character of the string has

position O. The integer number following the I indicates the length

of the selected sequence and is the length of the string expression.

The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.,. Example

string (10) S;

s (413)

S (I+J.l)

string (10) array T (1: ~m,2: :n);

T (4,6) (315)

6.70 Reference Expressions

6.7.1. Syntax

<simple reference expression> ::= <null. refert::nce> I <reference

variable> , <reference function

designator> I <record designator>

«reference expression»

40

6. EXPRESSIONS

<record designator> ::= <record class identifier> I <record

class identifier> «expression list»

<expression list> • e.. - <1 expression> , <expression list>,

<r expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a

record.

The value of a record designator is the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types pf the expressions must

be assignment compatible with the simple types of the record fields

(cf.7.2.2.).

6.7.3. Example

PERSON (nCAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hiera~~hy of operator precedences:

long, short, abs

~, shr, **
.,

*, /, div, rem, and

+, -, or
...

<, < =, =, -, =, > =, >, is

41

7. STATEMENTS

Example

A = B and C is equivalent to A = (B and C)

7. STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action, which may

consist of smaller units of action such as the evaluation of expressions

or the execution of other statements.

Syntax:

~rogram>

<statement> · .-· .-

<statement>. I
~roper procedure declaration>.

< 1 fUnction procedure declaration>.

<Simple statement> I <iterative statement>

<if statement> <case statement>

<simple statement> <block> <1 assignment statement>

<empty> <:procedure statement> I
<goto statement>

(Note: the terminating period is optional.)

7.1. Blocks

7 .1.1. Syntax

<block>

<block body>

<block head>

<block body> <statement> end

· . - <block head> \ <block body> <statement>;

<block body> <label definition>

begin \ <block head> <declaration>

<label definition> <ident ifier> :

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execut ion of the block· in the following st eps :

42

7 • STATEMENTS

step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body is already defined at

the place from which the block is entered, then every occurrence

of that identifier, A, within the block except for occurrence in

array bound expressions is systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3. Execution of the statements contained in the block body

begins with the execution of the first statement -following the

block head.

After execution of the last statement of the block body (unless

it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7.1.3. Example

begin real U;

U := X; X:= Y; Y:= Z; Z:= U

end

7.2. Assianment Statements

7.2.1. Syntax

In the following rules the symbols jo and jl must be replaced by

words as indicated in Section 1, subject to the restriction that the

type jl is assignment compatible with the type jo as defined in 7.2.2.

43

7 • STATEMENTS

<10 assignment statement> ::= <TO left part> <11 expression>

<10 left part> <11 assignment

statement>

<1 left part> ::= <1 variable>

7.2.2. Semantics

'.-

The execution of a simple assignment statement

<10 assignment statement> ::= <10 left part> <11 expression>

causes the assignment of the value of the expression to the variable.

If a shorter string is to be assigned to a longer one, the shorter

string is first extended to the right with blanks until the lengths are

equal. In a multiple assignment statement

«TO assignment statement> ::= <10 left part> <11 assignment

statement»

the assignments are performed from right to left. For each left part

variable, the simple type of the expression or assignment variable immediately

to the right must be assignment compatible with the simple type of that

variable.

A simple type 11 is said to be assignment compatible with a simple

type TO if either

(1) the two types are identical (except that if TO and Tl are

string, the length of the TO variable must be greater than

or equal to the length of the Tl expression or assignment), or

(2) TO is real or long ~, and 11 is integer, ~ or long

real or

(3) 10 is complex or long complex, and 11 is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer

to a record of one of the classes specified by the record class identifiers

a[;sociated with the reference variable in its declaration.

44

7 • STATEMENTS

7·2.3. Examples

Z := AGE(JACK) := 28

X 1- Y + abs Z .-
.C "- I + X + C 1-

P .- X-,=y

7.3. Procedure Statements

7.3.1. Syntax

<procedure identifier> I <procedure

identifier> (<actual parameter list»

<actual parameter list> ::= <actual parameter> I <actual

<procedure statement> . "_ ... -

parameter list> , <actual parameter>

<actual parameter> ::= <1 expression> I <statement> I <1 subarray

designator> I <procedure identifier> I
<1 function identifier>

<1 subarray designator> I "_ 1.-

<subarray designator list>

7.3.2. Semantics

<r array identifier> I <1 array

identifier> «subarray.designator

list»
I "_ .. ,- <subscript> I * , <subarray

designator list>, <sub script>

<subarray designator list>,*

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

procedure identifier is given by the procedure statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

7- STATEMENTS

step 1 of 7 •. 1.2.

Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the copy is an expression

different from a variable, then it is enclosed by a pair of

parentheses, or if it is a statement it is enclosed by the symbols

begin and end.

Step 4. In the copy of the procedure body every occurrence of an

identifier identifying a formal parameter is replaced by the copy

of the corresponding actual parameter (cf. 7.3.2.1.). In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, is executed.

7.3.2.1. Actual-formal correspondence. The correspondence between

the actual parameters and the formal parameters is established as

follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the procedure declaration heading. The

correspondence is obtained by taking the entries of these two lists

in the same order.

7.3.2.2. Formal specifications. If a formal parameter is specified by

value, then the Simple type of ·the actual parameter must be assignment

compatible with the formal type. If it is specified as result, then the

formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both the above

46

7. STATEMENTS

conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the ~ctual array parameter has

more subscripts than the corresponding formal parameter, enough subscripts

must be specified by integer expressions so that the number of *'s appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the positions with *'s in the subarray

designator in the order they appear.

7.3.3. Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

7.4. Gato Statments

7.4.1. Syntax

<goto statement> ::= got a <label identifier> go to <label

identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands ;a:s a

label.

7 • STATEMENTS

A gato statement determines that execution of the text be continued

after the label definition of the label identifier. The identification

of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently activated

but not yet terminated block contains the label identifier, then

this is the designated label definition. otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

'7 • 5. If Statements

7.5.1. Syntax

<if statement> <if clause> <statement> I <if clause>

<simple statement> else <statement>

<if clause> .. - if <logical expression> then

7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical

expressions. An if statement of the form

<if clause> <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement

following the if clause is executed. otherwise step 2 causes

no action to be taken at all.

48

7. STATEMENTS

.An if stat ement of the form

<if clause> <simple statement> ~ <statement>

is executed in the following steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the smple statement

following the if clause is executed. otherwise the statement

following ~ is executed.

7.5.3. Examples

if X = Y then gete L

if X < y then U := X ~ if Y < Z ~ U := Y else V := Z

7.5a Assert statements

7.5a.l Syntax

<assert statement> :: = assert <logical expression>

7.5a.2 Semantics

The assert statement is equivalent to the if statement:

if .(<1ogical expression» then endexecution

where "endexecution" signifies a procedure which terminates the execution

of an ALGOL W program. The assert statement can be used both as a

debugging aid (asserting conditions which should be true, but may not

be if a bug eXists), and as a program documentation aid.

7 • STATEMENTS

7.6. Case statements

7.6.1. Syntax

<case statement>

<statement list>

.. -.. - <case clause> begin <statement list> end

<statement> I <statement list> ; <statement>

<case clause> :: = ~ <integer expression> of

7.6.2. Semantics

The execution of a case statement proceeds in the following steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the

expression in the case clause must be the ordinal number of some

statement of the statement list.

7 . 6.3. Examples

case I of

begin X : = X + Y;

Y : = Y + Z;

Z := Z + X

end

case j of

begin H(I) := -H(I);

begin H(I-I) := H(I-l) + H(I); I.- I-I end;

begin H(I-l) := H(I-l) * H(I); 1.- I-l~;

begin H(H(I-l)) := H(I); I:= 1-2 end

end

50

7. STATEMENTS

7.7. Iterative Statements

7.7.1. Syntax

<iterative statement> <for clause> <statement> I <..While

clause> <statement>

<for clause> for <identifier> := <initial value>

step <increment> until <limit> do I for

<identifier> : = <initial value> until <limit>

do I for <identifier> : = <for list> do

<for list> <integer expression> I <for list>, <integer

expression>

<initial value> ::= <integer expression>

<increment> <integer, expression>

<limit> <integer expression>

<while clause> .. - while <logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

Example FOR statement Values I takes on

for 1:=1 ~ 2 until 10 do 1, 3, 5, 7, 9
for 1:=1 step 2 until 1 do 1

for 1:=1 ~ 2 until -10 do none

for 1:=1 ~ -2 until 10 do none

for 1:=1 step -2 until 1 do 1

for 1:=1 ~ -2 until -10 do 1, -1, -3, -5, -7, -9

for 1:=1 step 0 until 10 do 1, 1, 1, 1, 1, 1,

for 1:=1 ~ 0 until 1 do 1, 1, 1, 1, 1, 1,

for 1:~1 ~ 0 until -10 do none

Table of results for various FOR statements.

51

7 • STATEMENTS

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a .block or not. The value of the control identifier (the iden·tifier

fo~owing for) cannot be changed by assignment within the cont.I'olled

statement.

(a) An iterative statement of the form

for <identifier> : = El step E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-O>; <statement-l>

; <statement-N> end

<sta tement-I>;

th in the I· statement every occurrence of the control- identifier

is replaced by the value of the expression (El + I X E2).

The index N of the last statement is determined by

N < (E3-El) / E2 < N+l. If N < 0, then it is understood tlJ.at

the sequence is empty. The expressions El, E2, and E3 are

evaluated exactly once, namely before execution of <statement-a>.

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, ••• , EN do <statement>

is exactly equivalent to the block

52

1. STATEMENTS

(d)

begin <statement-l>; <statement-2> ••• <statement-I>

<statement-N> end

when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression EI.

An iterative statement of the form

while E do <statement> -
is exactly equivalent to

begin

L: if E then

begin <statement> goto L end

end

where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

1.-7.3. Examples

for V :~ 1 step 1 ~ N-l do S :~ S + A(U,V)

while (J > 0) and (CITY(J) I ~ s) do J :~ J-l

for I .- X, X + 1, X + 3, X + 7 do P(I)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with the input/output system. These standard procedures

differ from explicitly declared procedures in that the number and type

of actual parameters need not be identical in every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each j. is to be replaced by anyone of
1.

53

integer

real

long ~

complex

long complex

7.8.1. The Input/Output System

7. STATEMENTS

string «integer number»

logical

bits

ALGOL W provides a single legible input stream and a single legible

output stream. These streams are conceived as sequences of records, each

record consisting of a character sequence of fixed length. The input

stream has the logical properties of a sequence of cards in a card reader;

records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

of 132 characters, and the records are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.

Alternatively, it is possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

sequences, strings, or logical values. If such analYSis is specified,

data items may be reference denotations of the corresponding constants

(cf. Section 4). In additi.on, the following forms of arithmetic expressions

are acceptable data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> <r number>

where : j is one of integer, real, long real, complex, long

complex;

7 STATEMENTS

(2) <r 0 m.unber> <sign> <r 1 number>

<sign> <10 number> <sign> <11 number>

where: TO is one of integer, real, long real, and

Tl is one of complex, long complex.

Data items are separated by one or more blanks. Scanning for data items

initially begins with the first character of the input stream; after

the initial scan, it normally begins with the character following the

~ne which terminated the most recent previous scan. Leading blanks are

ignored. The scan is terminated by the first blank following the data

item. In the process, new records are fetched as necessary; character

position 80 of one record is considered to be immediately followed by

character position 1 of the next record. There exist procedures to

cause the scanning process to begin with the first character of a record;

if scanning would not otherwise start there, a new record is fetched.

Output items are assembled into records by an editing procedure.

Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type

integer

real

Field Description

right justified in a field containing

the number of chara~ters specified by

the current value of INTFIELDSIZE

(initialized to 14, cf. 8.~.) and followed

by 2 blanks

right justified in a field of 14 characters

and followed by 2 blanks

55

70 STATEMENTS

long real right justified in a field of 22 characters

and followed by 2 blanks

complex two adjacent real fields

two adjacent long real fields long complex

logical right justified in a field of 6 characters

followed by 2 blanks

string

bits

placed in a field exactly the length of

the string

same as real

The first field transmitted begins the output stream; thereafter, each

field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item is made the

first field of the next record. In addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Each

page group is automatically terminated after 60 records; procedures

are provided for causing earlier termination.

7.8.2. Read Statements

Implicit declaration headings:

procedure READ (11 result Xl;

procedure HEADON (11 result Xl;

(where n > = 1)

1 result X); n n

; 1 re suI t X); n n

Both READ and READON deSignate free field input procedures. Input

records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order

of appearance, and as~igned to the corresponding variables. The simple

7. STATEMENTS

type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item is caused to begin with the first character of

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, HEADON, or

IOC ONTROL (c f. 7.8. 1.) •

Implicit declaration heading:

procedure READCARD (string(80) result Xl' •.. , Xn);

(where n > = 1)

READCARD designates a procedure transmitting 80 character input

records without analysis. For each variable of the actual parameter list,

the scanning process is set to begin at the first character of a record

(by fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning is set to begin at the first character of the next sequential

record.

7.8.3. Write Statements

Implicit declaration headings:

j value X);
n--- n

procedure WRITEON (11 value Xl; •.• ; 1n value Xn);

(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the actual parameter list are converted

1
to character fields which are assembled into output records in order of

appearance (cf~ 7.8.1.). For each WRITE statement, the field corresponding

to the first value is caused to begin an output record; for a WRITEON

statement, assembly ccntinues from the previous point of termination.

57

7.8.4. Control statements.

Implicit declaration headinl3:

procedure IOCONTROL (}nteger value xl, ••• ,Xn);

(where n > = 1)

IOCONTROL designates a procedure which affects the state of the

input/output system. Argument values with defined effect are listed

below; other values currently have no effect but are explicitly Inade

available for local use or future expansion.

Value Action (cr. 7.8.1.)
1 Subsequent input scanning is set to begin with the first.

character of a record. Does nothing if already

positioned at the first character of a record.

2 Subsequent output assembly is set to begin ~ith the

first character of a record. Does nothing if already

positioned at the first character of a record.

3 Like IOCONTROL(2), except that the new record is also

caused to begin a new output page. Does nothing if already

positioned at the first character at the top of a page.

4 Subsequent automatic page ejects on the printed output

are suppressed, thus allowing more than 60 records on

a page. This suppresses only the automatic page eject

after 60 records; IOCONTROL(3) still works. (Note that

some operating systems also have a feature to force

page ejects after 60 records.~
5 Subsequent automatic page ejects on the printed output

are allowed; undoes IOCONTROL(4). While the automatic

page eject is suppressed, page and line counts are stili

maintained based on 60 records per page, so a program may

still be cut off for exceeding the page estimate. llise,

after an IOCONTROL(5), the first automatic page eject may

occur after I to 60 more records, unless the counters [l"Y'("~

re-synchronized at that point via IOCONTROL(3) .

72 Subsequent use of READ· and READON are to use only the first

72 characters of a record; the last eight are ignored.

READCARD still reads all 80 characters.

80 Subsequent use of READ and READON are to use all 80

characters of a record.

V At Stanford, a /* PRINT ~T=NO card must be included next to the
/* SERVICE card. 58

7 . STATEMENTS

7.8.5. Examples

'READ (X, A(1))
READCARD (S, LrNE(lO l80))
WRITE (ff AVERAGE =", SUM/N)
WRITEON (X(l,J))
IOCONTROL (2)

7.8.6 TRACE standard procedure

The number of times each source statement is traced by the debugging

facilities, or the number of times each source statement c'an generate a

significance error message (c.f. $DEBUG and $NORM in the Deck Setup

section) can be modified at execution time by the standard procedure

TRACE. Typical :use would be TRACE(0); at the beginning of a program to

initially turn the facility off, TRACE{n); at the beginning of a particular

section of code to be watched, and TRACE(O); at the end of that section.

Implicit declaration heading:

procedure TRACE (integer value N) ;

comment changes the upper bound for statement tracing

or significance error messages:

if N > 0 then N becomes the statem~nt tracing bound,

if N = 0 then statement tracing and floating-point

interpretation are suspended,

if N < 0 then ABS(N) becomes the significance error

mes sage bound;

TRACE has no effect unless a $DEBUG~3 $DEBUG,4 or $NORM option card

has been used.

x TRUNCATE (X) ENTlER (X) ROUND (X)

2.3 2 2 2

2·5 2 2 3

2·7 2 2 3

-2.3 -2 -3 -2

-2·5 -2 -3 -3

-2·7 -2 -3 -3

Table of values for TRUNCATE, ENTlER, and ROUND

59

8. STANDARD FUNCTIONS

8. STANDARD FUNCTIONS AND PREDECLARED IDENTlFlF..RS

The ALGOL W environment includes declarations and initialization of

certain procedures and variables which supplement the language facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be p~edeclared.

8.1. Standard Trans fer Funct ions

Certain :functions for conversion of values from one simple type

to another are provided. These f\mctions are predeclared; the

corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);
comment the integer i such that

I i I < = I X I < I i I + 1 and i *x > = 0

integer procedure ENTlER (real value X);

comment the integer i such that

i<=X<i+l

integer procedure ROUND (real value X);
comment the value of the integer expression

if X < 0 then TRUNCATE(X-O.5) else TRUNCATE(X+O.5)

integer procedure EXPONENT (real value X);

comment 0 if X = 0, otherwise the largest integer i such that

i < = log16 (I X I) + 1 .

This function obtains the exponent used in the 8/360
representation of the real number;

~ procedure ROUNDTOREAL (~ong real value X);

comment the properly rounded value of X

~ procedure REALPART (complex value Z);

comment the real component of Z ;

long real procedure LONGREALPART (long complex value Z);

real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);

8. STANDARD FUNCTIONS

complex 12rocedure lMAG (~ value X);

comment the complex number 0 + Xi

~ com121ex procedure LONGlMAG (l~ng ~ value X);

logical 12rocedure ODn (integer value N)r
comment the logical value

N~2=1;

~ procedure BITSTRING (integer value N);

comment two's complement representation of N

integer procedure NUMBER (~ value X);

comment integer with two'scomplement representation X

integer procedure DECODE (string(l) value ~);

comment numeric code for the character S (cf. Appendix 1)

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ - sign (blank for positive mantissa or integer)

u blank

Ea'ch exponent is unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16. Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.

61

string(l2) procedure BASEIO (real value X);

comment string encoding of X with format

u:EE:DDDDDDD ;

string(12) procedure BASE16 (real value X);
comment string encoding of X with format

LU:BB-:AAAAAA ;
string(20) procedure LONGBASEIO (long real value X);

comment string encoding of X with format

u: EE: DDDDDDDDDDDDDDD ;

string(20) procedure LONGBASE16 (long real value X);
cow~ent string encoding of X with format

Lu + BB+AAAAAAAAA.AAAA. ;

string(12) procedure INTBASEIO (integer value N);
cow~ent string encoding of N with format

u!DDDDDDDDDD ;

string(12) procedure INTBASEl6 (integer value N);

8. STANDARD FUNCTIONS

comment unsigned, two's complement string encoding of N with format

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system

environment. In some cases, they are partial functions; action for

arguments outside of the allowed domain is described in 8.5. These

functions are predeclared; the corresponding implicit declaration headings

hre listed below:

Eeal procedure SQRT (real value X);
comment the positive square root of X,

domain : X > = 0 ;

long real procedure LONGSQRT (long real value X);
comment the positive square root of X,

domain : X > = 0 ;

62

8. STANDARD FUNCTIONS

real procedure EXP (real value X);

comment e ** X ,

domain : X < 174.67 ;

long ~ procedureLONGEXP (long real value X);

comment e ** X ,

domain: X < 174.67 ;

real procedure LN (~~ X);

comment logarithm of X to the base e,

domain : X > 0 ;

long real procedure LONGLN (long.~ value X) ;

comment logarithm of X to the base e,

domain : X > 0 ;

~ procedure LOG (~~ X);

comment logarithm of X to the base 10,

domain : X > 0 ;

long ~ procedure LONGLOG (long real value X);

comment logarithm of X to the base 10,

domain : X > ° ;
~ea1 procedure SIN (real ~ X);

comment sine of X (radians),

domain : -823550 < X < 823550

long real procedure LONGS IN (long real ~ X);

comment sine of X (radians),

domain: -3.537'+15 < X < 3.537'+15

~ procedure COS (~~ X);

comment cosine of X (radians)

domain : -823550 < X < 823550

long ~ procedure LONGCOS (long ~ ~ X);

comment cosine of X (radians),

domain: -3.537'+15 < X < 3.537'+15 ;

63

real procedure ARCTAN (real value X);

comment arctangent (radians) of X,

range : -n/2 < ARCTAN(X) < n/2 ;

8. STANDARD FUNCTIONS

long real procedure LONGARCTAN (long real ~ X);

comment arctangent (radians) of X,

range : -n/2 < LONGARCTAN(X) < n/2 ;

8.3. Time Function

The ALGOL W environment includes a clock which measures elapsed

time since the beginning of program execution. The resolution of that

clock is 1/60 second. A predeclared function is provided for reading

the clock.

integer procedure TIME (integer value N);

comment Argument Result Units

- time of day
-1 seconds/fIJ

- elapsed execution time
a minutes/lOa
1 seconds/6/.)
2 seconds/3840o

The result for any other argument is not defined;

8.4. Predeclared Variables

The following variables are to be considered declared and initialized

by assignment in the conceptual block enclosing the entire ALGOL W program.

The values indicated for real and long real quantities are to be understood

as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE;

comment initialized to 14 ,

controls output field size for integers (cf. 7.8.1.);

integer MAXINTEGER;

comment initialized to 2147483647 ,

the maximum positive integer allowed by the implementation;

64

8. STANDARD FUNCTIONS

real EPSILON;

comment initialized to 9.536743'-07 ,

the largest positive real number E provided by the

implementation such that

1 + E = 1

long real LONGEPSILON;

comment initialized to" 2.'22044604925031' ,-16L ,

the largest positive long real number E provided by

the implementation such that

l+E=l;

long ~ MAXREAL;

comment initialized to 7. 23700557733226 '+75L ,

the largest positive long real number provided by the

implementation;

long rea 1 PI;

comment initialized to 3.14159265358979L

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow

detection and control of certain exceptional conditions arising in

the evaluation of arithmetic expressions and standard functions.

Implicit declarations:

record EXCEYrION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(64) XCPMSG);

reference (EXCEYrION)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQRTERR, ExPERR, INLOGERR, SINCOSERR

8. STANDARD FUNCTIONS

Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:

Reference Variable

OVFL

UNFL

DIVZERO

INTOVFL

INTDIVZERO

SQ,RTERR

EXPERR

INLOGERR

SINCOSERR

Conditions

real, long real, complex, long

complex (exponent) overflow

real, long real, complex, long

complex (exponent) underflow

real, long real, complex, long

complex division by zero

integer overflow

integer division by zero

negative argument for SQRT, LONGSQRT

argument of EXP ,LONGEXP out of

domain (cf. 8.2.)
argument of LN, LOG, LONGLN,

LONG LOG out of domain (cf. 8.2.)
argument of SIN, COS, LONGS IN,

LONGCOS out of domain (cf. 8.2,.)

When one of the conditions listed above is detected, the corresponding

reference variable is interrogated, and one of the alternatives described

below is chosen.

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the ArGOL W program continues.

In such situations, a value of 0 is returned as the value of a standard

66

8. STANDARD FUNCTIONS

function. For other conditions the result is that provided by the

underlying IBM SysterrV360 hardwareg!. In determining such a result, it

is to be noted that in those cases in which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection is so inhibit.ed when the corresponding

reference is NULL.

If the value of the reference variable interrogated is not NULL,

the fields of the record designated by that reference are interrogated,

and processing action is that described by the algorithm given below in

the form of an extended AlGOL W procedure. Identifiers in lower case

represent quantities which transcend the ALGOL W language; they are

explained subsequently.

procedure PROCESSEXCEPTION (reference(EXCEPTION) ~ CONDITION);

begin

XC PNOT ED (CONDITION) :=~;

XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;

if (XCPLIMIT(CONDITION) < 0) or XCPMARK(CONDITION) then

WRITE("**-*** ERROR NEAR COORDINATE nnnn _tr);

if XCPLIMIT(CONDITION) < 0 then endexecution else

l! integercondition then

resultant := default else

resultant := if XCPACTION(CONDITION) = 1 then adjustment. else

if XCPACTION(CONDITION) 2 then OL else

default

end PROCESSEXCEPTION

This procedure is invoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used is as follows:

~IBM System/360 Principles of Operation, IBM Systems Library, Form A22-682l

nnnn

endexecution

integercondition

default

resultant

adjustment

8. STANDARD FUNCTIONS

approximate coordinate of the source code

which was being executed when the exceptional

condition was detected

procedure to terminate execution of the AWOL W

program

logical value which is true if, and only if,

the condition being processed is integer overflow

or integer division by zero

result of the operation or function provided

by the ALGOL W system prior to invocation of

the exception processing procedure; this is

defined by the hardware~ for arithmetic

operations and is the value 0 for standard

functions

value to be returned as the result of the

arithmetic evaluation or standard function

invocation

adjusted result of the operation according to

the following table

Condition

exponent overflow,

division by zero

exponent underflow

Adjustment

if default < 0 then

-MAXImAL else MAXREAL

OL

argument X out of domain for

SQ,RT, LONGSQ,RT

EXP, LONGEXP

LN, LONGLN

LOG, LONG LOG

SIN, LONGSIN

COS, WNGC OS

SQ,RT(abs X), LONGSQ,RT(abs X)

MAXREAL

-MAXREAL

-MAXREAL

OL

OL

~IBM System/360 Principles of Operation, IBM Systems Library, Form A22-682l

68

8. STANDARD FUNCTIONS

The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which is accessible only by' the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

condition XCPACTIONrl or 2 XCPACTION=l XCPACTION=2 Reference=NULL

OVFL exponent 128 + MAXREAL 0 exponent 128
too small too smail

UNFL exponent 128 0 0 0
too large

DIVZERO dividend + MAXREAL 0 dividend

INTOVFL true result true result true result true result
~ 2**32 ~ 2"**32 ~ 2**32 :!:. 2**32

INTDIVZERO dividend dividend dividend dividend

SQRTERR 0 sqrt(abs x) 0 0

EXPERR 0 MAXREAL 0 0

LNLOGERR 0 -MAXREAL 0 0

S:rnCOSERR 0 0 0 0

Table of Results for Exceptional Conditions

69

8. STANDARD FUNCTIONS

Y,xample:

It is desired to allow up to ten overflows, but to each time replace

the result with MAXREAL and to print a warning message.

The values needed for this are:

XCPNOTED

XCPLIMIT

XC PACTION

XCIMARK

XCPMSG

FALSE

10

1

TRUE

" "

this will be changed to TRUE if an overflow occurs.

allow up to ten overflows before being cut off.

replace the result with ~MAXREAL.

print a message each time an overflow occurs.

message to be printed.

The following assignment statement will establish the proper

environment:

OVFL : = EXCEPrION(FALSE, la, 1, TRUE, "OVERFLOW FIXED UP") ;

70

CHARACTER CODES

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

strine characters and their (EBCDIC) integer encodings. This encoding

establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character. (Also see CODE, D~ODE on page 139.)

64 space 129 (a) 193 A 240 0

74 (t) 130 (b) 194 B 241 1

75 131 (c) 195 C 242 2

76 < 132 (d) 196 D 243 3

77 133 (e) 197 E 244 4

78 + 134 (r) 198 F 245 5

79 135 (g) 199 G 246 6

80 & 136 (h) 200 H 247 7

90 (!) 137 (i) 201 I 248 8

91 :$ 145 (j) 209 J 249 9

92 * 146 (k) 210 K

93) 147 (1) 211 L

94 148 (m) 212 M

95 -, 149 (n) 213 N

96 150 (0) 214 0

gr / 151 (p) 215 P

107 , 152 (q) 216 Q

108 % 153 (r) 217 R

109 162 (s) 226 S

110 > 163 (t) 2zr T

111 ? 164 (u) 228 u
122 165 (v) 229 V

123 1/ 166 (w) 230 w
124 @ 167 (x) 231 X

125 168 (y) 232 Y

126 = 169 (z) 233 z
lzr "

71

ALGOL W

ERROR MESSAGES

by

Richard L. Sites

72

ERROR MESSAGES

72.1

ERROR MESSAGES

ALGOL W ERROR MESSAGES

The compiler is divided into three passes: pass 1 reads the program,

lists it, and saves it in memory in a compressed (tokenized) form;

pass 2 parses the program, examining each statement to see if it is written

properly; pass 3 generates the 360 machine code for the program. Each

pass is capable of detecting a different set of errors. (There is also

a fourth, loader, pass that on rare occasions may generate messages.)

Errors may also occur while a compiled program is executing; these are

called Run-Time errors.

Pass One Error Messages

All pass 1 error messages are of the form:

ERROR lx.xx NEAR COORDINATE yyyy - message

yyyy corresponds to one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing. Same messages are

only warnings, in which case the fixup action taken is indicated below.

The messages are:

1001 INCORREX:!TLY FORMED DEr!LARATION

a) STRING (x) or BITS(x), where x is not a number.

b) STRlNG(O) or STRlNG(> 256). FIXUP: treated as STRING(l).

c) BITS (not 32).

1002 WARNING: INCOR:REr!T CONSTANT

a) More than 256 digits. FIXUP: treated as O.

b) A bad exponent. FIXUP: exponent treated as o.

1003 MISSING "END"

Final It." or /* card or % card encountered before an END matching

each BEGm. The coordinate indicated may be two or three more than

the last coordinate on your listing. (Check the block m.~bers in

the second column of your program listing.)

73

ERROR MESSAGES

1004 UNMATCHED "END" (DELETED)

An END encountered after what appeared to be the final END. When

possible, the innermost END is deleted. (Check the block numbers

in the second column of your program listing.)

1005 WARNING: MISSING If)"

STRING(x or BITS(x with no closing ")". FIXUP: supplied.

1006 WARNING: IJJLEGAL CHARACTER

A strange character accidently keypunched (or overpunched). It is

likely that the character will print as a blank, so look at your card.

The characters on a standard keypunch that are illegal except in

comments and strings are: ¢ & $ % ? @. FIXUP: treated

as a blank.

1007 WARNING: MISSING F'INAL " "
May occur if the program ends with an un-terminated string constant

or an un-terminated comment.

1008 WARNING: JNVALID STRING LENGTH

a) A string constant of length> 256. FIXUP: truncated to 256

characters. (You may have left out a quote.)

b) An empty string constant (""). FIXUP: replaced with H?".

1009 WARNING: INVALID BITS LENGTH

a) "#" not followed by hex digits. FIXUP: replaced with 410.
b) "=If' followed by more than 8 hex digits. FIXUP: replaced

with ,JJ:O.

1010 MISSlNG "("

REFERENCE not followed by "(tI.

lOll ERROR TABLE OVERFLOW

More than 50 error messages from pass 1. The rest are lost.

1012 COMPILER TABLE OVERFLOW

The program is too big to fit in memory during compilation. The

following is a list of tables which could be full at this point.

If you re-compile with more memory, the starred tables will be

bigger.

ERROR MESSAGES

* BCD POINTERS -- if all of your names are short (3, 4 letters)

this table may fill up before the id table.

BLOCK LIST -- 511 entries, one for each BEGIN, PROCEDURE (except

for formal parameter specification), and FOR.

BLOCK STACK -- this has a fixed size of thirty entries. It will

overflow if you have 31 BEGINs nested within each other. (The

block numbers in the second column of your program listing show

how full this stack is.)

* ID TABLE .-- place for the characters in your identifiers.

* NAME TABLE -- table of attributes of all declared identifiers.

* PROGRAM TOKEN SPACE -- the internal text for the program. This

is the most likely table to be full.

* REFERENCE LIST -- information about each variable declared of

type REFERENC E •

1013 WARNING: ID LENGTH > 256

One of the names in your program is much too long. FIXUP: truncated

to 256 characters.

1014 WARNING: UNEXP~TED " " .
An apparently final "." not followed by % card or 1* card, such as

in a constant with an inadvertant space: • 123 FIXUP: treated

as a blank.

1015 TOO MANY RECORD CLASSES

Only 15 are allowed.

1016 WARNING: SEQ FIELD OUT OF ORDER

a) The numeric part of columns 73-80 was not greater than the

numeric part of the previous card.

b) The alphabetic part of columns 73-80 was not the same as the

alphabetic part on the previOUS card.

In either case, the offending card(s) is marked with ##lIon the

listing. This message appears only once in any single compilation.

The coordinate specified is the coordinate on the first erroneous

card.

75

ERROR MESSAGES

1017 WARNING: Sm. FIELD CONTAINS TRASH

a) The first card of the deck did not contain a sequence number,

but columns 73-80 on this card are not all blank. (A statement

may have accidently run past column 72).
b) The first card of the deck has a non-blank sequence field

(columns 73-80), but there are n'o digits in it.

In either case, the offending card(s) is marked with **** on the

listing. Like 1016, this message appears at most once, and the

coordinate refers to the first instance.

1018 WARNING: tf;" DELETED BEFORE "ELSE"

This is a cornmon mistake that the compiler fixes up.

Pass Two Error Messages

All pass 2 error messages have the format:

ERROR 2xxx NEAR COORDINATE yyyy - message

(FOUND NEAR " ..• ")

yyyy corresponds to one of the coordinate numbers in the first column

on the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing. " ••• " is the

program text being scarmed at the time the error is detected (which may

be somewhat after the actual point of error). If any pass one or pass

two error messages occur (other than warnings), then compilation stops

at the end of pass two. Often many error messages are generated for

what is essentially a single mistake.

75·1

ERROR MESSAGES

2001 MORE THAN ONE DECLARATION OF "xxxx" IN THIS BLOCK

The variable XXXX h8,s been declared more than once in the same block.

2002 "XJCXX" IS UNDEFINED

The variable or labelXXXX has not been declared in the current block

or in one containing it.

2003 SYNTAX ERROR

This is a "catch-all" message that is produced when the compiler cannot

find anything more meaningful to say. The current context will point

to the part of the program being analyzed when the error was DETECTED,

but in general the real error may be much earlier in the program. If

the current context is at or near a semi-colon and you cannot find

any errors there, try looking at the beginning of the statement which

ends at that semi-colon. If the current context is at or near an

END, try looking at the corresponding BEGIN. For example, if

ELSE BEGIN END; occurs, but not after an IF, the compiler will

not detect the error until it reaches END; •

2004 IDENTIFIER MUST BE RECORD CLASS ID

In a declaration REFERENCE (xyz) , xyz is not the name of a record

class.

2005 MISMATCHED PARAMETER

A procedure call is passing an actual parameter which is not of the

same type as the formal parameter in the procedure declaration.

2006 INCORRECT NUMBER OF ACTUAL PARAMETERS

The number of actual parameters in a procedure call does not equal

the number of formal parameters in the procedure declaration.

2007 INCORRECT DIMENSION

a) The number of dimensions of an actual parameter does not equal the

number of dimensions declared for the corresponding formal parameter.

b) The wrong number of subscripts have been used in an array element

reference.

2008 DATA AREA EXCEEDED

The data for each PROCEDURE or BEGIN block with declarations is limited

to 4096 bytes. Read the suggestions for 3001.

ERROR MESSAGES

2009 INCORRECT NUMBER OF FIELDS

In creating a record, too many or too few initial values have been

specified.

2010 INCOMPATIBLE STRING IJENGTHS

a) In STRINGI := STRING2, STRING2 is longer than STRINGI.

b) In STRING3(x\y), y is larger than the declared size of STRING3.

c) A long string has been passed to a shorter formal string parameter.

2011 INCOMPATIBLE REFERENCES

A reference variable refers to a wrong record class.

2012 BLOCKS NESTED TOO DEEPLY

Non-trivial blocks (i.e., BEGIN blocks with declarations, or the

blocks associated with a PROCEDURE) are nested. more than eight deep

(including the BEGIN at the start of the program). The error is

detected early in the ninth block. Also, procedure calls nested too

deeply.

2013 WARNING:

In BEGIN

II.ff , ~rlOULD NOT FOLLOW EXPRESSION

expression ; END the semi-colon is inc9rrect but ignored.

2014 REFERENCE MUST REFER TO RECORD CLASS

In REFERENCE(xyz) ..• , xyz is not a record class.

2015 EXPRESSION MISSING IN PROCEDURE BODY

A function PROCEDURE must have its final value specified by an

expression standing alone immediately before the END.

2016 IMPROPER COMBINATION OF TYPES

Mixing incompatible types as alternatives of a conditional or case

expression.

2017 RESULT PARAMETER MUST BE A VARIABLE

In a procedure declaration, a formal parameter is declared

.•. RESULT xyz , but a call to that procedure has passed an expression

which is not a variable.

2018 PROPER PROCEDURE ENDS WITH {ill EXPRESSION

A procedure Which returns no value nonetheless ends with an expression.

(This sometimes happens when a final assignment statement has been

mis-punched A = B , instead of A : = B .)

77

.l:!:RROR MESSAGES

2019 "xxxx" CANNOT FOLLOW "yyyy" HERE

There are no legal programs in which XXXX and YYYY can be written

together. This is much like 2003. (You may have left out a

semi-colon, a comma, or an operator.)

2020 ARRAY USED INCORRECTLY

A simple variable must be used here.

2021 TOO MANY CONSTANTS IN PROCEDURE

No more than 256 different constants are allowed.

2022 INCORR~T STRING LENGTH

In S(x\y), y is negative, zero, or greater than 256.

2023 COMPILER TABLE OVERFLOW

The program is too big to fit into memory during compilation -- there

is no more room for the parse trees that represent the program at

this pOint. If you re-compile with more memory, there will be more

room available for the program.

2024 TOO MANY PROCEDURES

Only 255 different procedures or BEGIN blocks with declarations are

allowed by the compiler.

2025 CONSTANT OUT OF RANGE

a) The absolute value of an integer is greater than (2**31)-1

(9+ digits).

b) The absolute value of the adjusted exponent in a real number is

greater than 75. The exponent written is first adjusted to

include the number of digits written in front of the decimal point.

2026 INDEX OF ARRAY OR STRING MUST BE INTEGER

a) In S(x\y), x is not an integer expression.

b) In Arrayname(.•. x ••.), x is not an integer expression.

(You may have accidently used a REAL variable.)

2027 INCORRECT OPERAND TYPE(S) FOR XXXX

XXXX is a unary operator.

a) LONG is applied to something which is LOGICAL, STRING, BITS,

or REFERENC E •

b) SHORT is applied to something which is ~LOGICAL, STRING, BITS,

or REFERENCE.

c)

d)

(not) is applied to something which is neither LOGICAL nor BITS.

Prefix + or is applied to something which is LOGICAL,

STRING, BITS, or REFERENCE.

e) ABS is applied to something which is' LOGICAL, STRING, BITS, or

REFERENCE.

f) In Recordvariable(x) , x is not a REFERENCE.

g) In FOR I:=x .•• , x is not an integer expression.

h) In various other contexts, an INTEGER or LOGICAL operand is

required.

2028 INCORRECT OPERAND TYPE(S) FOR XXXX

XXXX is a binary operator. Even when the error is in the first

operand, the error is detected after both operands are inspected.

a) AND or OR is applied to expressions which are not both BITS or

both LOGICAL. This case often happens in an IF statement when

necessary parentheses are left out;

IF X < Y OR Z = 3 THEN •••

As written, y is to be ORed with z before anything else is

calculated. Try instead:

IF (X < Y) OR (Z = 3) THEN

b) A relational operator (like » is applied to something which

is COMPLEX, LOGICAL, or REFERENCE.

c) SHL or SHR is applied to something which is not BITS, or the

shift amount is not INTEGER.

d) In x IS Recordclass , x is not a REFERENCE.

e) In x**y , x is LOGICAL, STRING, BITS, or REFERENCE, or y

not INTEGER.

f) In a FOR statement, the UNTIL expression is not INTEGER.

g) In various other contexts, an INTEGER operand is required.

79

is

ERROR MESSAGES

2029 INCORRECT PARENTHESIZATION OF EXPRESSION

This often occurs in conjunction with 2027 or 2028. Usually,

additional parentheses are required in the expression.

2030 ASSIGNMENT INCOMPATIBILITY

An attempt to assign an expression of one type to a variable of a

different type (or pass an actual parameter to a formal parameter

of a different type). The only automatic conversions allowed are

INTEGER to REAL, INTEGER to LONGREAL, REAL tol from LONGREAL,

INTEGER/REAL/LONGREAL to COMPLEX/LONGCOMPLEX, COMPLEX tol from

LONGCOMPLEX. (You cannot assign REAL to INTEGER without using

TRUNCATE,. ENTlER, or ROUND.)

2031 WARNING: NAME PARAMETER SP~IFIED

In a PROCEDURE declaration, it is usually intended that each formal

parameter have VALUE specified.

2032 SD1PLE VARIABLE USED INCORRECTLY

In " x(", x is a simple variable and not STRING.

2033 75 ERRORS. COMPILATION TERMINATED

Something is drastically wrong with your program. To save time

and paper, the rest of the program is ignored.

2999 DEBUG TABLE OVERFLOW

If $DEBUG,x is specified with x equal to 2, 3, or 4, then a table

is created with a fixed maximum of 448 entries, where one entry is used for

each GROUP of statements that all occur together with no labels,

branches or conditional expressions. All the statements in such a

group are guaranteed to -be executed the same number of times. Also,

this message occurs if the compressed form of the program occupies

more than 65536 bytes of memory (the compressed form is used to

generate the pseudo~listing with the statement counts).

Pass Three Error Messages

Pass 3 error messages are of the form:

ERROR 3xxx NEAR COORDINATE yyyy - message

yyyy corresponds to one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

coordinate of the first one is on the program listing.

80

ERROR MESSAGES

All of the pass 3 errors are disastrous, so compilation terminates

immediately. After any pass 3 error, a table is

listed of (coordinate number, byte offset, byte length) triples, indicatinE;

how much code was generated for each statement in the current program

segment. The last entry of this table and the last two byte lengths are

usually garbage.

3001 PROGRAM SEG.MENT OVERFLOW

This error message occurs because of a design constraint of the

compiler: the total amount of machine code and constants for any

PROCEDURE or other BEGIN block with declarations must be less than

B192 bytes. All of the constants for a block are allocated in front

of the first statement. Therefore, if the byte offset of the first

statement is very large, constants are taking up too much space.

This sometimes happens in programs with too many string constants

(ten BO-Gharacter string constants take up Boo bytes). The coordinate

indicated mayor may not be very accurate. The only solutions are

to make your program smaller, or to add some artificial PROCEDUREs

or BEGIN blocks with at least one declaration, such that part of" the

block that was too big is forced into another segment.

3002 COMPILER STACK OVERFLOW

While generating code for a statement, the compiler uses a push-down

stack to keep track of where it is in the statement tree. If you

are about to get a PROGRAM SEGMENT OVERFLOW (3001), you may get this

message instead.

3003 COMPILER LOG Ie ERROR

Internal consistency checks performed by the compiler have failed.

Take your card deck, exactly as it is, to a consultant.

3004 PROORAM AREA OVERFLOW

Although the words are similar to 3001, this is entirely different.

This message means that there is no more room in memory to put the

machine code for your program (like 2023 and 1012). If you

re-compile with more memory, there will be more room available for

the machine code.

B1

ERROR MESSAGES

3005 DATA SEGMENT OVERFLOW

The data for each PROC:EDURE or BEGIN block with declarations is

limited to 4096 bytes, Read the suggestions for 3001.

3006 COORDINATE TABLE OVERFLOW

In order to supply the coordinate number in run~time error messages,

a table is built of (coordinate n~ber, address in ~aGhine code)

pairs. If you re-comp~le with more memory, thi~ table will be larger.

3007 TOO MANY PROCEDURE CaLS

References to only 31 procedureB are allowed within any Single

procedure.

Loader Error Mes sae;es'

Loader error messages are all of the form:

*** LOADING ERROR - message

Like pass 3 messages, these are d~sastrous and terminate processing.

DUPLICATE GLOBAL NAME - XXX

INSUFFICIENT STORAGE

INVALID OBJECT ~ORDS

NO EXECUTABLE STATEMENTS

TOO MANY PROCEDURES

UNDEFINED GLOBAL NAME - XXX

Two procedures with the same name were

loaded.

Not enough room to run th~ program.

Re-run with more memory.

A bad object card was presented, often

an extra blank card.

No main program was loaded, only external

procedures.

Only 96 program segments are allowed by

the loader.

An external procedure w~s de~lared, but

not loaded.

82

ERROR MESSAGES

Run r:.cime Error Messages

All run error messages are of the form:

RUN ERROR NEAR COORDINATE yyyy IN procedure name - message

After a run error, a post-mortem dump of all of the program's variables is

given, unless it is explicitly turned off with a $DEBUG,O card. To keep

the dump reasonably small, at most eight values are dumped from an array.

If the same identifier is declared in many blocks (note that the index

variable in a FOR loop is considered to be declared in a block aroillld just

the FOR statement), then that identifier will be listed many times.
~

Variables which have never been assigned any meaningful value are printed

as I'?"

ACTUAL-:FORMAL rvnSI'v1ATCH IN PROCEDURE CALL, PARAMETER =#=xx

The actual parameter passed is not assignment compatible with the

formal pararnet er.

ARRAY SUBSCRIPTING

An array subscript was not within the declared bounds.

ARRAY TOO LARGE

The first n-l dimensions of an array declaration define too many

elements. The product of the size of a single element times the

first n-l dimension lengths (upper bound - lower bound+ 1) must

be strictly less than 32768. The element sizes are:

logical

integer, real, bits,

reference

long real, complex

long complex

string

1

4

8

16

length of a single string

83

ERROR MESSAGES

ASSERTION xxxxxxx FAILED

An assertion was not true. xxxxxx.x is a rurming count of how

many assertions were true, to give a feel for how long the program

had run.

ASSIGNMErIT TO NAME PARAMETER

Attempt to assign to a name parameter whose actual argument is not a

variable, but is instead an expression, a constant, or a control

identifier.

CASE SELECTION INDEXING

Index in a case statement or case expression is less than 1 or

greater than the number of cases.

DATA AREA OVERFLOW

No more storage is left for variables. This will happen if a program

gets in a loop calling itself recursively, or if there really is not

enough memory.

DIVISION BY ZERO

May also be caused by O**(-n) .

EXP ERROR

The argument to EXP must be less than 174.67 .

INCOMPATIBLE FIELD DESIGNATOR

An attempt has been made to access a field of a record, but the

reference does not designate a record of the corresponding class

(it might be NULL or undefined).

INCORRECT NUMBER OF PARAMETERS

The number of actual parameters in a procedure call is different

from the number of formal parameters declared in the called procedure.

INTEGER DIVISION BY ZERO

An integer operation attempted to divide by zero.

INTEGER OVERFLOW

An integer operation produced a number whose absolute value is

bigger than (2**31)-1. The standard functions ROUND, TRUNCATE,

and ENTlER will produce an integer overflow if presented with

arguments whose absolute value is bigger than (2**31)-1.

84

EHROR MESSAGES

LENGTH OF STRING INPUT

The string read was longer than the string variable has room for.

This somet imes happens if a string ends in exactly column 80 of a

card, and another string begins in column 1 of the next card, since

the two quote marks (col 80 and col 1) are part of the same string.

Put at least one blank in between (or a whole blank ca~·d). Also,

check for a missing quote.

LN/LOG ERROR

An attempt to take the logarithm of a negative or zero number.

LOGICAL INPUT

The quantity read was not TRUE or FALSE.

NULL OR UNDEFINED REFERENCE

An attempt has been made to access a record field using a null or

never initialized reference.

NUMERICAL INRJr

The number read was not assignment compatible with the variable in

the READON or READ statement. This sometimes happens when running

from a terminal if the line numbers on the data cards are accidently

read.

OVERFLOW

A real operation produced a number whose absolute value is bigger

then 7.2'+75. This may occur when dividing by a very smail number,

such as in 1'+50/1'-50

PAGE ESTIMATE EXCEEDED

The page estimate on the %ALGOL card is exceeded. Note that any

tracing ($DEBUG,3 or 4) output is included in this page limit.

(cf. Deck Setup and Compiler Options, page 103.)

PROGRAM CREG K #=nn

The compiler or the code it generated was wrong. If this happens,

take your card deck, exactly as it is, to a consultant.

READER EOF

No more data cards. A % card or a /* card w~s read instead. This

is a normal way to terminate in many programs.

RECORD STORAGE ARF.A OVERFLOW

No more storage exists for records.

REFERENC E INFlIT'

References cannot be read.

SIN/COS ERROR

See the domain restrictions in Section 8.2.

SQ,RT ERROR

Attempt to take the square root of a negative number~

STRING mIUT

A null string or a string greater than 256 cbaracters was read. See

LENGTH Of STRING INPUT' above.

SlTBSTRmG INDEXING

Substring selected extends off one end of the string

TIME ESTIMATE EXCEEDED

The time estimate on the 1ALGOL card is exceeded.

UNDERFLOW

A real operation produced a number whose abs0lute value is less than

5. l+' -79 , but not exactly zero. This may occur when dividing by a

very large number, such as in 1'-50/1'+50 .

86

ERROR JvTESSAGES

ABEND Messages

You may occasionally get terse messages on the first page of your

output of the form:

*** ABNORMAL JOB END *** SYSTEM CODE X xxx

or

COMPLETION CODE - SYSTEM = xxx

where xxx might be:

222 }
322

722

OCl

oc4

oc6

You ran out of time or lines as specified on your

JOB card (not the limits on the 1~GOL card) .

(cf. page 103.)

The compiler probably made a mistake. After

verifying that the deck or catalogued procedure

includes both a / /SYSPRINT and / /SYSIN DD carll)

take your deck, exactly as it is, to a consultant.

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

AND RELATIONS TO ALGOL W

by

George E. Forsythe

88

NUMBER REPRESENTATION

88.l

NUMBER REPRESENTATION

The following notes are intended to give the

student of Computer Science 105 or 106 some orientation

into how numbers are represented in the IBM System/360

com~uters. Beoause we are using Algol W, some refer

ences are made to that language. However, very little

of what is said here depends on the peculiarities of

A~gol W, and this exposition is mostly applicable to

Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

full~word integers of FL/lo Users of shorter or

longer integers or decimal arithmetic in PL/l will

need more orientation.

NU~U3ER REPRESENTATION

are

NUMBER REPRESENTA'rrON

On IBM's system 360, the following units of information storage

used:

a)

b)

c)

d)

the bit, a single a or 1

the ~, a group of eight consecutive bits

the (short) word, a group of four consecutive bytes

i.e., 32 consecutive bits

the long word, a group of two consecutive short words -

i.e., eight bytes or 64 bits.

For number. representation in Algol W the words and long words are

the main units of interest.

INTEGERS

Integers are stored in (short) words. Of the 32 bits of a short

word, one is reserved for the sign (0 for + and 1 for -), leaving

31 bits to represent the magnitude. A positive or zero integer is

stored in a binary (base 2) representation. Thus 21
10

(the subscript

means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 .

t
Sign bit

To confirm this, note that

21 = Q. X 230 + .•. + Q. x 2 5 + .! x 2
4

+ Q X 23 + ! X 22 + a X 21 + 1 X 2
0

•

The largest integer that can be stored in a word is

230 + 229 + .•• + 21 + 2° = 231 _ 1 = (2147483647) .
10

Any attempt to create or store an integer larger than 23
1

- 1 will

produce erroneous results, and (unfortunately)'the user will not always

be warned of the error. (See below.)

To save space in writing woras on paper, each group of four bits

in a word is frequently converted to a single base-l6 (hexadecimal)

digit, according to the following code:

mJMBFR REPRESENTATION

base 2 base 16 base 2 base 16

0000 0 1000 8
0001 1 1001 a

./

0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 llOl D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of the decimal

numbers 10, 11, 12, 13, 14, 15 respectively. Nevertheless, integers are

stored as base-2 nwnbers.

Using hexadecimal notation, the decimal number 21 is represented by

. 0000001516

Note that 15
1

6 is the base-16 represen~~ation of 2110 .

Negative integers are stored in what is called the "two's complement

form". For example, -1 is stored as

1111 1111 1111 1111 1111 1111 1111 1111,

= FFFFFFFF16 .

Also, -21 is stored as

1111 1111 1111 1111 1111 1111 1110 1011

= FFFFFFEB16 •

The representation for -21 is obtained from that for +21 by changing
-

every 0 to 1 and every 1 to 0, and then adding +1 in base-2 arithmetic

to the result. Similarly for any negative integers. Every negative

integer has 1 as its sign bit. The smallest integer storable in

System/3W is _231
= -2147483648 ,and is represented by 8000000016 .

Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent)

of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued

subtraction will give the representations for -2, -3, ••..

91

NtTlJiliER REPRESENTATION

From the point of view of an accumulator we can also see what

. happens when we create a positive number larger than 231
-1. For

example, if we add 1 to 23 1_1, the resulting carry will go all the

way into the sign bit, leaving a sign bit of 1 with all other digits
31 '

zero. But this is the representation of -2 • Thus the attempt to
31 ' 32 produce positive numbers in the range from 2 to approximately 2

will yield a negative sign bit. Consequently) positive integers that

"overflow" into this range are sensed as negative by System/360. The

mechanisms of ALGOL W for detecting integer overflow (not described in

this document) can be used to detect additions, subtractions, or

multiplications that produce integers outside the range from _231 to

23 1 _1 (so-called integer overflow). Attempts to divide an integer by 0

will yield an error message and an irrelevant quotient and remainder.

The behavior of System/360 on integer overflow is quite different

from the Burroughs B5500. In the latter machine, any integer that

overflows is replaced by a rounded floating-point number. There are

advantages tv either approach to integer overflow, depending on the

application.

If the user suspects that integers in his program are getting

anywhere near 109, he should convert them to double-precision floating

point numbers by use of the Algol vI operator LONG. Conversion to single

precision floating-point numbers may lose some precision.

The most important thing for a scientific user to remember is that

integers in the range _231 to 23 1_1 are stored without any approximatlon.

Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results
31 31 are integers between -2 and 2 -1. It is perhaps easier to remember

as safe the interval from -2 X 109 to 2 X 109 , obtained from the

useful approximation 210 - 103 •

92

NUMBER REPRESENTATION

The operations of division without remainder (called DIV in Algol W)

and taking the remainder on division (called REM in Algol W) always give

integer answers. If the divisor is 0, an error message is given.

In Algol W two operations on integers give results that are not

stored as integers -- namely / and **.

FLOArrING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude

well beyond the range of integers descr:Lbed above. To provide for

this, System/360 and most scientific computers have a second way to

represent numbers -- the so-called floating-point representation.

The significance of the name "floating-point" is that the radix point

-- for example, the decimal point in base-IO numbers -- is permitted to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix. Although a decimal point that has floated

off to the left will produce a number written like 0.001345, the

numbers are actuall.:v represented in a form closer to what is of'ten

called scientific notation, here 1.345 X 10-3 .

In System/.360,floating-point numbers are.always represented in

base-16 notation; i.e., the radix or number base is 16. This permits

us to write numbers in abbreviated form (as we did with integers earlier).

More important, the use of base-16 conforms with the hardware arithmetic

processes in which shifting is done four bits at a time to speed up tj1e

operations. The speed-up is achieved at a slight cost in precision,

as is learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by

a single word of 32 bits. This is the so-called Single-precision

or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from 0 to 31, from le:t't to right, just to identify

them. In floating-point representation the le:t't-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digits) are devoted to the sign of

the number and the exponent of 16 associated with the number. The right

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

NUMBER REPRESENTATION

represent six significant hexadecimal digits (the significand) of the

number.

As with integers, the sign of the number is denoted by bit 0,

with a representing + and 1 representing

Bits 1 to 7 give the binary (base-2) representation of a non

negative integer in the range 010 to 12710, inclusive. This in

teger is called the biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-point numbers could not

include such numbers as l6-25 . It is desirable to have an exponent

range that is approximately symmetric about zero. In System/360 one

obtains the true exponent of the floating-point number by subtracting

64 from the biased exponent represented by bits 1 to 7. As a result,

the actual exponents range from -64 to 63.

The 24 bits 8 to 31 of a number are regarded as six hexadecimal

digits with a hexadecimal point at the left-hand end. If the floating

point number zero is being represented, all the hexadecimal digits are

zero, as are all the other bits. Otherwise, at least one of the hexa

decimal digits must be nonzero. A floating-point number is said to be

normalized if the left-hand hexadecimal digit (the most significant

digit) of the significand is nonzero. In System/360 the floating-point

numbers are ordinarily normalized, and we will not consider any other

forms.

We now give the floating-point representations of some sample

numbers. As we said before, the number zero is represented by 32 zero

bits, i.e., by eight 0 hexadecimal digits. Thus zero is represented

by the same words in floating-point or integer form. No other number

has this property.

The number 1.0 is represented by the word

sign bit

40 ,100 0001
1

biased
exponent

.0001 0000 0000 0000 0000 OQOQ,

significand

r-nJMBER REPRESENTATION

To check this, note that the sign is 0 (representing +). 'llhe biased

exponent is 1000001
2

or 6510 , Subtracting 64
10

yields 1 as the

true exponent. The hexadecimal significand is 10000°16 , Putting a

hexadecimal point at the left end gives the hexadecimal fraction

.10000016 ' which equals 1/16. Thus the above w"brd represents

+ 1/16 times 161 , or 1.0 .

To save writing, the above word is ordinarily written in the

hexadecimal form 41100000. While one gradually learns to recognize

some floating-point numbers in this form, the author knows no easy way

to convert such a hexadecimal word into a real number. One just has

to take the right-hand six hexadecimal digits, and prefix a hexadecimal

point. Then one examines the left-hand two-hexadecimal-digit number

(here 41). If this is less than 8016 , the floating-point number is

positive and one gets the true exponent by subtracting 4016 = 64
10

.

If the left-hand two-hexadecimal-digit number is 8016 or larger, the

floating-point number is negative, and one gets the true exponent by

subtracting C016 = 8016 + 4016 = 19210 and affixing a minus sign.

Some facility with hexadecimal arithmetic is required, if one has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the- left of the six significant hexadecimal digits, and regarded

the exponent as biased high by 6410 ' As an alternative, the reader

may prefer to place the radix point just to the right of the most

significant digit of the significand, and regard the exponent as biased

high by 6510 ' This brings the significand closer to usual scientific

notation but, of course, requires a trickier conversion to get the

true exponent. The fact that either interpretation (and many others)

are possible shows that really the radical point is just in the ey-e of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa

decimal notation, with the confirmation left to the reader.

/ 95

decima'l

0.0
1.0
0.0625

16.0
256.0

-1.0
-16.0

3·5

floating-point

00000000
41100000
40100000
42100000
43100000
CIIOOOOO
C2100000
41380000

NUMBER REPRESENTATION

The largest floating-point number is 7FFFFFFF, representing

• FFFFFF X 163F or (1 - 16-6) X 16L)3 ~ 7.23 X 1075 . (Here 10 and 16

denote decimal numbers.)

The smallest positive normalized floating-point number is 00100000,

representing

Negatives of these two nQmbers can also be represented, and are

the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, 1/3 = .33333310
only approximately. In the same way, very few numbers can be exactly

represented with six significant hexadecimal digits. (Exercise:

Which ones can?) For example, 1/3 = .55555516 only approximately.

Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

1/10 .10000010 exactly; but

1/10 .19999A16 only approximately.

Thus round-off error enters into the representation of most

floating-point numbers on System/360, and the round off differs from

that with decimal numbers. This can eaSily give rise to unexpected

results. For example, if the above number .19999A
I
G (~0.110) is

multiplied by the integer 10010 = 6416 ' one gets not A.0000016
10.010 ' but instead A.0000316 , as a cumulative effect of the slightly

high approximation to 0.1
10

. And A.00003
l6

rounds to 10.0000210
on conversion to decimal.

The precision of a single-precisi~n hexadecimal number is roughly

10-7 . One can think of this as being crudely equivalent to seven

NUMBER REPRESENTATION

significant decimal digits.

Not only do errors appear in the representation of numbers inside

System/360 (or any computer), but they arise from arithmetic operations

performed on numbers. For example, the product of two floating-point

numbers may have up to 12 significant hexadecimal digits. When the

product is stored as a single-preciSion floating-point number, it must

be rounded to six hexadecimal digits. This introduces an error, even

ihough the factors might have been exact.

The story of round off and its effect on arithmetic is a complex

and interesting one. Only within the current decade have there begun

to appear even partly satisfactory methods to analyze round off, and

we cannot go into the matter now. Some idea of this is obtained in

Computer Science 137·
When an Algol W program assigns decimal numb.ers or integer values

to variables of t.ype REAL, these are immediately converted to hexadecimal

floating-point numbers, with (usually) a rOillld-off error. When one

outputs numbers from the' computer in Algol W, they are converted to

decimal. Both conversions are done as well as possible, but introduce

changes in the numbers that the programmer must be aware of. And, of

course, all intermediate operations introduce further round offs and

possible errors. It is illlthinkable to do the analysis necessary to

counteract these errors and get the true answer to the problem. If the

user wishes answers uncontaminated by round off, he should use integers

and integer arithmetic, and be prepared to guard against overflow.

Fortunately most users can accept an indeterminate amount of

round off in their numbers, provided they have same assurance that

round off is not growing out of control. It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished in some areas, and hardly

at all in other s .

DOUBLE PRECISION

The preCision of single-preCision floating-point numbers seems

97

NUMBER REPRESENTATION

very adequate for most scientific and engineering purposes, being at the

level of seven decim~ls. However, a considerable number of computations

require stil~ more precision in the middle somewhere, just in order to

com~ out with ordinary accuracy at the end. As a result, System/3(~

has provided an easy mechanism for getting a great deal more precision

in the computations. For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are

found in tqe first word of the double-word, with precisely the same

interpret~tion as· with single-precision floating~point numbers_ The

second wor~ of the double-word consists 'of eight hexadecimal digits

immediately following the six found in the first word. ,);here is no

sign or exponent in the second word. Thus a double-word represents

a signed floating hexadecimal number with 14 significant hexadecimal

digits. As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero.

Examples:

1.OL.

O.lL

long significand
I ,

1+1 100000 00000000

40 199999 9999999A

There is a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single

precision multiplication of single-precision factors takes around 4 micro

seconds, while that for double-precision factors takes around 7 micro

seconds. For modest problems the extra time is complet~ly lost in the

several seconds of time lost to systems and compilers, and the use of

double-precision is strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long preciSion is the

doubling in the amount of storage needed. If one has arrays with tens

of thousands of elements, the extra storage may be very costly. other

wise, it should not matter.

6-14. -17 Since 1 :;: 10 ,the double-precision numbers are crudely

equivalent in precision to 17 Significant decimal digits.

For a. machine with the speed. of the 360/67, a number precision of

NlJ1vffiER REPRESENTATION

six hexadecimal digits ,(roughly seven decimals) is considered very low,

while a precision of 14 hexad.ecimal digits (roughly 17 decimals) is

very adequate. rrhe float ing-point arithmetic hardware of Syst em/3(-{)

provides the possibility of detecting when numbers have gone outside

the exponent range stated above. The reader may think that a range

from roughly 10 -79 to 1075 should cover all reasonable computations.

While exponent overflow and exponent underflow are not very cornmon, they

can be the cause of very elusive errors. The evaluation of a determinant

is a common computation, and for a matrix of order 40 is quite rap1.clly

done (if you know hOw). If the matrix elements are of the quite

reasonable magnitude

no larger than roughly

-')
10 , the magnitude of the determinant will be

10-90 (and probably much smaller), well below

the range of representable floating-point numbers. Such probleln:3 are

a frequent source of exponent underflow.

We shall not discuss here the mechanisms of Algol W for 6.et(;ctlnt~~

ex-ponent overflow and underflow, for these should be written up in

another place. Even without these, we see that floating-point nwnbers

behave well for numbers that are at least 10
66

tjlnes. as lar::::;e a .. .; the

largest integer in the system! Hence use of floating-point numllc'Ts

meets almost all the problems raised by integer overflow. And, or

course, it pennits the use of a large set of rational numbers, which

do not even enter the integer system.

AffiOL W REALS AND LONG REALS

The' Algol W manual tells how to represent real variables and

numbers to take advantage of both single-and double-precision. The

purpose of this section is to bring this information into rapport with

the hardware representation of numbers. If a variable X is declared

REAL, one word is set aside for its values, and it will be stored in

single-precision floating-point form. If a variable is declared to be

LONG REAL, a double-word is set aside to hold its values,_ and it will

be stored in double-precision form.

99

NUMBER REPRF.SFm'ATION

If a number is written in one of the decimal forms without an L

at the end, it will be chopped to single-precision, no matter how many

digits are set down. Thus 3.1415926535897932 will be immediately

chopped to Single-precision in the program, and all the superfluous

d.igits are lost at~. Thus the assignment statement

XX := 3.1415926535897932

will result in the double-word XX receiving an approximation to TI

in the more significant half, and all zeros in the less significant

halft Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form

XX := 3.l4l5926535897932L .

With the declaration REAL X, the statement

X := 3.l4l5926535897932L

will result in X having a single-precision approximation to TI, as

the long representation of TI is chopped upon assignment to X.

The reader should now go back and examine the specifications

of the types of various arithmetic expressions, as stated on pages 9, 10,

II of the Algol W Notes, and in Section 6.3 of the Language Definition.

Some of the less expected effects are the following: Suppose we have

declarations

REAL X, Y, Z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, 1**J, and I*X are all long real.

The ass~gnment statement

XX := X := y*Z

will result in XX having a single-precision chopped version of Y*Z in

the more significant half, and zeros in the less significant word.

Moreover, 1*1 is INTEGER, but I**2 is LONG REAL.

100

NUMBER REPRESENTATION

If the reader understands the language Algol W and the preceding

pages on number representation, he should have a good basis for

understanding the effects of mathematical algorithms. But he should

always remain wary of what a computer is actually dOing to his numbers!

101

DECK SETUP

AND

COMPILER OPTIONS

by

Richard L. Sites

1.02

1. DEX:K SETUP

102.1

1. DECK SETUP

ALGOL W Deck Setup and Compiler Options

1. Simple Deck Setup

§§

gUICK partition

(Job and Kerword cards)

1* SERVICE CLASS=Q

1/ ~ ALGOLW

IISYSIN DD *
§(%ALGOL

(program)

{
1;DATA

§ (data)

/*

§ Optional.

§§

BATCH partition

(Job and Keyword cards)

/ / Em:! ALOOLW

//SYSIN DD *
§(%ALGOL

(program)

{
1JJATA

§ (data)

/*

§§ May be repeated -- second and following %ALGOL cards are

required.

For simple cases, the above control cards are sufficient. More

complicated cases are discussed later under 3. Linkage to Separately-

Compiled Procedures.

1.1 Time and Page Limits

To avoid using too much computer time or paper when a program has

mistakes in it, both the operating system and the ALGOL W system monitor

the amount of time and pages used. The operating system keeps track of

the total time used for compiling one or more programs, executing them,

printing any post-mortem dumps, loading the compiler into core, interpreting

the operating system control cards, etc. The operating system also keeps

track of the total amount of printed output from a run -- control card

listing, compiler listing, actual execution output, error messages,

103

1. DECK SETUP

post-mortem dump, etc. The limits for these totals are specified on

the JOB card in tenths of minutes and thousands of lines; exceeding these

JOB card l:imits results in an ABEND 322 message from the operating

system and no other information.

The ALGOL W system monitors the amount of t:imeand pages used by

each program just during its execution, not during its compilation or

during any post-processing. If these execution l:imits are exceeded,

ALGOL W will print a run-time error message (TIME ESTIMATE EXCEEDED or

PAGE ESTIMATE EXCEEDED) with the coordinate of the program statement

executing at the time. The subsequent post-mortem dump and optional

program listing can be very helpful in determining what went wrong.

To make sure that the ALGOL W system is able to get out this information,

the JOB card limits always should be sufficiently bigger than the ALGOL W

limits.

The normal ALGOL W execution limits are 10 seconds and 9 pages

(60 lines/page). These may be changed by specifying different limits on

the ~L card in columns 8-29:

%ALGOLTIME=sss,PAGES=ppp

where sss is the maxim'WD. execution t:ime in seconds; ppp is the maximum

n'WD.ber of pages of execution and tracing output. TIME may be abbreviated T;

PAGES, P. Time and Pages may be given in either order.

Example: for 2 minutes and 20 pages, use:

%ALGOL T=120,P=20

(Previous versions of the compiler had slightly different control cards:

1~OF instead of %DATA, and min:sec,pages instead ,of TIME= and PAGES=

These older conventions are also accepted by the present compiler.)

103.1

1. DEXJK SETUP

1.2 Other %ALGOL Card Parameters

Two other execution environment options may appear on the %ALGOL
card. MARGIN=72 specifies that READ and HEADON should only scan the

first 72 columns of data cards. MARGIN=8o specifies that READ and HEADON

should scan all 80 columns of data cards. The default value is MARGIN=8o,

unless the program source cards are sequence numbered; in that case, it

is assumed that the data cards are also sequence numbered and MARGIN=72

is the default. MARGIN may be abbreviated MARG. (cf. Section 7.8.4.

for dynamic control of this margin.) SIZE~ specifies that the

maximum amount of dynamic space requested by either the compiler or the

execution library is xxx*1024 bytes. This directive is only used in

rare cases to prevent the compiler from using all of the core available

to it.

TIME, PAGES, MARGIN, and SIZE may be specified in any order.

103.2

c:.. IvVlvJ..t" .l...lJl!J.tt V.t'T.l..Vl'Jo

2 • Compiler opt ions

Any of the following cards can appear in a deck between a 1oALGOL

and the next 1cPard:

$NOLIST

$LIST

$TITLE, " ••. "

$ SYNTAX

$STACK

$DUMP*ab,cc

$NOCHECK

$DEBUG,n(m)

Do not list subsequent source cards. The compiler normally

lists all input cards.

List subsequent source cards: this undoes a previous $NOLIST.

start the program listing on the next page, and place

" "(up to 30 characters) as a title in the middle of

the heading line.

Analyze the program for syntax errors, but do not execute.

Dump the current parsing stack if a pass 2 syntax error should

occur, with the most recent syntactic element listed last.

Dump certain internal tables during a compilation. This

option in general is used only by those maintaining the

compiler, but is documented here for the sake of completeness.

Since its use significantly increases the amount of printed

output for even small compilations, random experimenting is

discouraged. See the table at the end of this section.

Omit checking su~script ranges and reference compatibility

and omit initialization of variables to

"undefined".

Activate the tracing, statement counting, and post-mortem

dump facilities of the ALGOL W system.

The single digit n specifies:

o nothing fancy (use this to minimize the space used by

the system).

1 a post-mortem dump of all the program's variables if

execution terminates abnormally, else nothing.

2 the above plus counts of how often each statement was

executed.

104

2. COMPILER OPrIONS

3 the above plus a statement-by-statement trace of each

value stored.

4 the above plus a trace of each value fetched.

If tracing is spec ified ($DEBUG, 3 or $DEBUG, 4) and the standard

procedure TRACE (cf. Section 7.8.6.) is not used, then

each ALGOL statement will be traced in symbolic form the

first m times it is executed. Each time a statement is

traced, it produces at least two lines of output (included

in the run-time limit), so a 100 statement program with

$DEBUG,3(2) will produce at least 400 lines of output

(unless it dies an early death) •

THE DEFAULT IS $DEBUG,l post-mortem dump, but no counts

or traces.

The following abbreviated control cards are acceptable:

$DEBUG

$DEBUG,x

for $DEBUG,4(2)

for $DEBUG,x(2)

(no DEBUG card) for $DEBUG,l

All variables are initialized to a bit pattern considered

to represent an undefined value (printed in the traces and

post-mortem dump as "?"). For some data types, all bit

patterns can be valid, so valid data can appear to be

undefined.

See Section 4, page lll, for a detailed explanation of the debugging

facilities.

105

2. C(lr,1PILER OPrIONS

$NORM,a,b Activate the floating-point significance tracing facilities

of Algol W. This facility interprets the operation of each

floating-point add and subtract executed by the program,

counting the number ,of base 16 digits of pre shift and postshift.

If these shifts exceed the limits specified by a and b

respectively, then a ene-line SIGNIFICANCE ERROR message 'is

written. This facility allows the user to examine inaccuracies

in his computer result s which are due to either

(1) adding/subtracting numbers of widely varying sizes,

involving large pre-alignment shifts,.

or (2) effectively subtracting numbers which are almost equal,

involving large post-normalization shifts.

The parameters a and bare one- or two-digit numbers in

the range 0-16. Preshifts > a or postshifts > b will cause

a significance error. The table below is a summary of the

hardware and interpreter meanings of the shift counts (" larger"

and "smaller" refer to absolute values of the operands, and

"digit H refers to a base 16 digit).

o
1-5

6

7

8-13

14.

15

16

REAL operands

Trace all add/sub.

Trace if more than a few
digits of smaller operand
are lost.

Trace if only one digit of
smaller operand is retained
as guard digit, or none at
all.

Trace if operands are incom
mensurate; result is larger
one.

Tracing off.

TraCing off.

TraCing off.

TraCing off.

105·1

LONG REAL operands

Trace all add/sub.

Trace if more than a few
digits of smaller operand
are lost.

Trace if more than a few
digits of smaller operand
are lost.

Trace if more than a few
digits of smaller operand
are lost.

Trace if more than a few
digit s of smaller operand
are lost.

Trace if only .one digit of
smaller .operand is retained
as guard digit, or none at
all.

Trace if .operands are inc.om
mensurate; result is larger
operand.

TraCing off.

b

o

1-5

6

7

8-13

14

15

16

REAL operands

Trace if post-normalize by
more than a few digits.

Trace if only digit of
result is guard digit or
result is O.

Trace if result is exactly
O.

Tracing off.

Tracing off.

Tracing off.

Tracing off.

2. COMPILER OPI'IONS

LONG REAL operands

Trace all add/sub.

Trace if post-normalize by
more than a few digits.

Trace if post-normalize by
more than a few digits.

Trace if post-normalize by
more than a few digits.

Trace if post-normalize by
more than a few digit s .

Trace if only digit of
result is guard digit, or
result is O.

Trace if result is exactly O.

'rracing off.

FOR A ROUGH LOOK AT A NUMERICAL PROGRAM, $NORM,3,3 IS
RECOMMENDED.

If a significance error occurs, the following message will be

printed:

**** SIGNIFICANCE ERROR NEAR xxx IN yyy: 1111 ~ 2222 ~i~~ = zz ****

where xxx is the coordinate number of the statement being
executed.

yyy is the name of the procedure being executed.

1111 is the first operand, in decimal.

2222 is the second operand, in decimal.

+ is + for a floating-point add, - for a subtract.

zz is the number of base 16 digits actually shifted.

To keep the amount of printed output meaningful, the message

will be printed· only for the first 10 times that a significance

error occurs at each coordinate. The tenth message will have

three dots instead of the last three asterisks. The limit of

ten messages can be changed during execution via the standard

procedure TRACE (cf. Section 7.8.6), allowing the user to turn

off the- significance checking in part of a program and then to

turn it on again.

2. COMPILER OPrIONS

For each coordinate, a count is kept of how many significance

errors have occurred in that statement. These counts are

printed as a small table at the end of execution. The table

has a maximum of 49 entries, plus one overflow entry that

totals all lost counts as occuring at coordinate 0000. Any

individ.ual count greater than 65534 is printed as "65535+".

Overhead: Using this facility increases the size of the machine

code generated by about 3% to 5% (8 bytes for each floating

add/ sub). The interpreter slows down the execution of each

floating add or subtract by about a factor of 100, but in

typical programs, the overall slowdown wi.ll only be a factor

of 2 or 3. If TRACE (0) is used to turn off the interpretation

except in selected portions of a program, the increase in

execution time can be as low as 10%.

Restrictions:

(1) When actually source tracing with $DEBUG,3 or 4,
floating-point operations will not be interpreted. When

the $DEBUG interpreter is not operating (typically after

a statement has been executed twice), then the significance

interpreter can.

(2) This facility cannot be used with $DEBUG,O or with

separate compilation, linkedit, and execution.

105·3

2. COMPILER OPrIONS

$DUMP* options

The $DliMP* card specifies two things: what tables to be dumped, and

which segments in the program the dumping applies to. For example, the

360 machine code for only one of many procedures can be dumped.

General format:

$DUMP*ab,cc

a is a single digit and is ignored.

b is a single digit and asks for some combination of 5 tables to be

dumped.

cc is exactly two digits -- a number in the range 0 to 63, or two blanks.

If cc is blank, then tables for all segments will be dumped.

If cc is a number, then the machine code for only that segment will

be dumped. Many $DUMP* cards may be used to specify more than one

segment. If the b digits are different, the last one is used.

tables dumped:

pass3 pass3
b digit

pass2
parse tree

pass2
nametable

pass2
editcode

(hex)
360 code wi some
addresses missing

360 code wi most
addresses inserted

0

1

2

3 X

4 X

5 X

6 X X

7 X X

8 X X

9 X X

x

x

X

X x
X

106

X

X

x
X

X

X

X (same as 7)

2. COMPILER OPrIONS

l.O6.1

3 • SEPARATE C OMPILATIONE

3. Linkage to Separately-Compiled Procedures

ALGOL W provides a facility for pre-compiling procedures and linking

them back together again. For small programs, it is not worthwhile to

use this facility, since re-compiling a procedure may be faster than

punching an object deck and reading it back in. A facility is provided

for generating standard IBM linkages for calling FORTRAN programs.

3.1 Compiler Organization

As shown in the diagram below, there are actually two versions of the

ALGOL W compiler; both versions use exactly the same code for the various

phases of the compiler and for the run-time library, but the monitor

phase is slightly different. The compile, load, and go incore version

is called ALGOLW; it can handle object decks only in a crude way, but

its in-core loader handles the debugging feature information. The

compile only version is called ALGOLY; it produces standard 08/360 object

decks, but cannot pass any debugging information (so $DEBUG,O is forced).

The output from ALGOLY can be link-edited with other object decks or load

modules, including those produced by Fortran G or H. In order to be

executable, the object decks from ALGOLY must be link-edited or loaded

with the ALGOL library and with the ALGOL run-time monitor (ALGOLX). To

facilitate this, all object decks for ALGOL main programs include

external references to the monitor and to the library.

The restricted object deck facility for the compile, load and go

version only handles:

1) object decks

2) of procedures (not main programs)

3) from ALGOL W

4) run with no debugging features ($DEBUG,O) •

107

3 - SEPARATE COMPILATIONS

If a procedure declaration is compiled and a //SYSFUNCH DD card is

supplied, then an OS/360 object deck for that procedure is produced. This

deck can then be used with the link-editor or OS/360 loader as: above, or

it can be read back into the compile, load" and go system when the main

program is ccmpiled. For this purpose, the deck setup is exte11lded to:

§§

§

§{ ~GOL

$DEBUG,O (must be specified)

(main progra,11)

§ { ~BJ.F.r!T
(procedure object deck(s»

{ ~ATA
§ (data)

/*

Optional.

§§ May be repeated -- second and following %ALGOL cards

are required.

108

COMPILE, LOAD, and GO INCORE

COMPILER

(ALGOLW)

3. SEPARATE COMPILATIONS

COMPILE and use OS/3&J

LOADER or LINKEDITOR

Source

COMPILER

(ALGOLY)
,

.M
(OB~T DECK)

INCORE OB~T CODE

AND DEBUG INFO

,
\

\

109

aI'HER ALGOLW

O~T D:EI!KS

ALGOLW

LIBRARY
and MONITOR

(ALGOLX)

O~T DPI!K

OS/3tJJ LOADER

or LINKEDITOR

FORTRAN

OBJECT DECKS

3. SEPARATE COMPILATIONS

3.2 Control Cards for Using OS/360 Loader

Three catalogued procedures are provided: ALGOLCG, ALGOIC, and

ALGOLG, for compile and load, compile only, and load only respectively.

In all of them, the object decks are passed in the same way that

Fortran object decks are passed, so (for instance) ALGOLC and FORTHC can

be intermixed and followed by ALGOLG. The stepnames are COMP and GO.

Parameters given on a %ALGOL card are not passed to the GO step; instead,

the EXE:! card parameter field is decoded the same way.

Example:

/ / STEPA EXn:: ALGOLCG, PARM. GO= 'MAP, EP=ALGOLX/TIME=5, PAGES =15 '

3.3 Ca1ling External Procedures

In a program which ca1ls an external procedure, a dummy procedure

declaration and body are used to establish the proper correspondence

(cf. Section 5.3.2.4). The symbols algol and fortran in that dummy body

indicate the use of ALGOL Wand standard IBM linkages respectively; the

associated string is extended (with blanks) or truncated to eight characters

and is used as the entry point name of the external procedure. For a

FORTRAN external procedure, the entry point name is just the name of the

FORTRAN subroutine or :f\.mction. For an independently compiled ALGOL W

procedure, the entry point name is the procedure identifier extended

(with" * "s) or truncate<i to five characters and followed by "001" .

110

3. SEPARATE COMPILATIONS

Example:

first
compilation

INTEGER PROCEDURE MYFUNC'II:ON(REAL VAIlJE X) ;

BEGIN INTEGER I;

I

END.

BEGIN

INTEGER K,L,M;

REAL A,B;

second
canpilation

INTEGER PROCEDURE YOURFUNCTION(REAL V.AI1JE Y);

ALGOL "MYFUN001";

K : = YOURFUNC T ION (A) ;

END.

A FORTRAN subroutine or subprogram can be used as a.ri AInOL W procedure.

The type correspondence between ALGOL W and FORTRAN is given by the

following table:

ALGOL W

integer

real

long real

canplex

~ complex

logical

string (n)

bits

reference

IBM FORTRAN IV

INTEGER*4

REAL*4

REAL*8

crnPLEX*8

COMPLEX*16

LOGICAL*l

(LOGICAL*n)

LOGICAL*4

110.1

3. SEPARATE CO~LATIONS

string f\mctions are not implemented. The following formal parameter

types are allowed and are interpreted as indicated:

(1) (simple T type)

The corresponding actual parameter is examined. If that parameter

is a variable, the address of that variable is computed (once only)

and transmitted. otherwise, the expression which is the actual

parameter is evaluated, the value is assigned to an anonymous local

variable, and the address of that variable is transmitted.

(2) (simple T type) value, (simple T type) result,

(simple T type) value result

As in ALGOL W procedures, a local variable unique to the call is

created, and the address of that variable is transmitted.

(3) (simple T'type) array

The address of the actual array element with unit indices in each

subscript position is computed and transmitted, even if that element

lies outside the declared bounds of the ALGOL W array. lttrays with

only one dimension and arrays with unit lower subscript bounds will

have elements with indices which are identical in ALGOL W and

FORTRAN routines. lttray cross-sections should not normally be

used as actual parameters of FORTRAN subprograms.

If FORTRAN input/output or FORTRAN error handling facilities are :to be

used, the subroutine package IOCOM, or a suitable substitute, is required.

110.2

Example: ,

Al.gol W
compilat ion

Fortran
c ompilat ion

:3 • SEPARATE C CHPILATIONS

BEGIN

COMPLEX Z;

COMPLEX PROCEDURE COMPLEXOO,RT(COMPLEX VALUE A);

FORrRAN "FAKEIT";

Z := COMP'L.EXSQRT(Z) ;

END

FUNCTION FAKEIT(X)
COMPLEX FAKEIT, X
FAKEIT = CSQRT(X)

RETURN

END

llO.3

· 4. COMPILER .OUTRJT

4. Compiler Output

4.1. Introduction

The printed output of the compiler consists of five general

cat egories :

1) Source card listing

2) Error messages

3) Run-time and tracing output

4) Statement counts

5) Post-mortem dump

The amount of output in some of these categories can be controlled

by various compiler options (cf. Compiler Options, page 104).

1) $NOLIST, $LIST, $TITLE.

2) No control.

3) $DEBUG,3 or $DEBUG,4 activates the tracing.· The standard

procedure TRACE (cf. Section 7.8.6.) dynamically controls the

trac ing output.

4) $DEBJG,2, 3 or 4 activates the statement cOunts.

5) If a program terminates with a run error and $DEBUG,O was not

used, a post-mortem dump is produced.

(In the explanation which follows, circled numbers are keyed to the

circled numbers on the sample output.)

4.1.1. Source Card Listing

The source listing consists of four col1:JJlIls of output:

a) Coordinate number G)
This statement count is incremented once for each semi-co10n

(except end-of-comment), BEGIN, or ELSE in the program. If there

are many statements on a card @' the coordinate listed refers

to the first statement on that card. All error messages and

tracing information are keyed to the coordinate numbers.

111

4 • COMPILER OUTRJT

b) Block nesting level ~
The nesting level counter is incremented by one for each BEGIN

in the program and decremented by one for each END. The counter

is printed only when it changes; then the first character in

this column refers to the nesting level of the first BEGIN on

the card, and the second character refers to the nesting level

of the last END on the card. If you have the proper number of

BEGINs and ENDs, the nesting level for the last card should

be 1.

c) Card image CD
Columns 1-72 of each card are printed exactly as they were

read. $ option cards are ~ot printed.

d) Sequence field 0
Columns 73-80 of each card are printed here, with eight spaces

between column 72 (card image) and column 73 (sequence field) (§).

The source card listing is followed by a line giving the options

which will be in effect during the execution of the program ®. These

include the debugging option (specified by a $DEBUG card), the time limit

in seconds, the page limit, the word NOCHECK if that option has been

specified (cf. Section 2, Compiler Options), and the words MARGIN=72 if

the initial right margin for READ, and READON is set at column 72 instead

of 80. This last option is set if the source deck is seCluence numbered,

on the assumption that the data cards are also (cf. Section 7.8.4. for more

details on margins).

4.1.2. Error Messages @
These are printed immediately after the source card listing and are

further explained in the Error Messages section of this manual.

4.1.3. Compile Time and Amount of Code ®
The last line of the compilation gives the amount of time spent in

the compiler and either the phrase NO CODE GENERATED if fatal error

messages occurred, or the phrase (xxxxx, yyyyy) BYTES OF CODE GENERATED if

112

)+.. COMPILER OUTRJT

compilation was successful. xxxxx is the number of bytes of /360

machine language generated. yyyyy is the number of bytes of

information generated for the debugging facilities:

$DEBUG,n
and above information included

o (i.e., always) Table relating coordinate numbers to program

1

2

3,4

addresses, for creating RUN ERROR messages.

Table of names and types of each variable used, for

post-mortem dump and tracing.

A compressed version of the source code, for the

pseudo-listing.

Additional editing markers in the compressed source

code, for breaking the tracing at the proper points,

and for more closely correlating the machine code

with the source code.

4.1.4. Run-time and Tracing Output

This category includes an optional statement-by-statement trace of

the program as it executes Cl) (explained in more detail below), any

output that the program itself produces in WRITE and WRITEON statements ~,

and perhaps a run error message saying why the program terminated (2).
If the tracing were turned off, the output would look like that on page

118.

4.1.5. statement Counts

This optional print-out consists of a pseudo-listing of the

program @ with coordinate numbers @ and counts of how many times

each statement was executed @. To determine how many times a particular

statement was executed, follow the vertical bars straight up and to the

113

4. COMPILER OUTRJT

left until a number is encountered. For example, the statement count

for the IF at coordinate 0012 is found by following the bars up to

coordinate 0005, then up and left to the 6. on the preceding line;

if this path goes through the statement where the program terminC:l.ted

prematurely @' then subtract one from the count. Thus, the IF

statement at coordinate 0012 was executed 5 times (true 1 time, false

4 times). The pseudo-listing has all the comments removed and is

formatted to show the block structure of the program. You are encouraged

to make use of the statement counting facility in order to better under-

stand ~ust where your program is spending its time.

4.1.6. Post-Mortem Dump

This error analysis aid @ shows the names and values of all

variables which were active at the time the program stopped. By looking

at the values of the variables used in the last statement executed @,
it is easier to determine what (if anything) went wrong. The exact

format of the dump is discussed below.

113.1

~6'~f~\ !lG0l tD'1~J6'7Zt

8EGI·J
ca p~T "~~1G:a .. TO a:t!ll,) AVePIGf Of GR~UPS OF ~lJ"8EkS. ~ACt4 G~OUP

~.,L'~ wITH T"~ ~U"~ft: -1;

IHTE~tp SU".CO~T .'lJ"?;

19 Jl~UARY 1917. • 21:54
®

0000 1-
0001
0001
0001
OQOl
0002
Oon2 ?-
0003
1)00]

wHIle Tltt)e; 00 CO"M~''H lOOP UNT IL I~PUT EXt4A~UrcO;
ReGI·, ®
CO ~NT TMIS CA~' MaS A S~QUE~E NU~8:~ FlfLO ---~---------------~>; '8eOI234 ••••

0004 -
<J006
CKJ06 1-
1)001 -
OGeS --
0009 --
0010 -I
0011 --
0012 -
OOU -
QOU -2

0"" -1

SU" :. rOO'fT :. t\;
'!'O~~(~U~!.I w_IT~ONC~J .. 8.;
wMIL; :~IJ"~~-J 00

"!Gt ~
SU~ :. S~ • N~';
(OUH! I- C~T • 1;
RElOo-C~UMI'1 WRtTfn~C"~lt
EtCOa

IF t;OU~:T.') TtoeN "-ITFC-e"PTY (i8OU ... t ELSE
w_ IT FC-CO''''T -,C'JUt,T, -50" - • SUIllt.-,y!1taG' -, S""',O\INfI;
t ocr ~T ~rLC?'
!IIO

1110

C~IL"I~ DI~~"'i

~ f •• f1~ It 17 III .. C~,)I"'T! c·lftJ - v.,NIIIIG: SeQ FII .. , CON".eG raA~"

~ *:.14 SfC ... OS III COlllt'IlAnON. "-4-'28, 01 SS61 eY1'ES OF. CODE a.iAAn:o

SaaIpl e Cc.pxter output

19 ~ 1972 • 21154

PAGE

.~ TRACING "UPH:
"002 1. --I ILE TRUE DO

• - ~UEi
1)0('3

G)
1.--1 SUM :a COUNT :a 0

CWNT :- 0; SUM :- 0;
0004 1.--1 REAOONCNUMBt
INPUT RfCORO: "I l 3 -1 29. " NUMB :a 1i
00t)5 1.--1 WR IT EON(NUMB.

NUN8 • 1:

0006 1.--1 WHILE NUMB - -1 00
NUMB - 1; .. - TRUE.;

C',)01 1.-- , SUM :- SUM + NUMB
SUM • 0; NU .. B .. 1; SJM : .. 1;

0008 1.--' COUNT :- COUNT + 1
COUIIT • 0; COUNT :- I:

OC09 1.-1 REAOON(NUMSI
HU .. ,- 2;

0010 1.--' NRlTEONCNaM8,

@
NUMB .. 2;
2

t)C06 (WHILE NUMB -It
MJMB .. 2: • • TRUE;

0007 2.--1 SUM : - SUM + NUMB
SUM .. 1; NUMB • 2; SU" :. 3.

OC08 2.--1 (WhT :. COUNT + 1
COUNT - 1; COUNT :- 2;

0009 2.--1 REAOON(NUMB.
NU-M8 :- 3;

01)1(1 2.-- J Nti. ITF ON (NU-MfU

J:: NUMB .. 3;
VI 3

0006 (WHILE NUMB ... - -11
MJMB - 3; . - TRUE;

-1

-> TRACING (MAIN) :
0011 1.--' IF COUNT • 0 THEN

COUNT • 3; • - FALSE;
0011 1.--1 WR I TE (·COUNT ", COUNT, "SUM ", SUM, "AVERAGE ", SUM'COUNT,
COUNT

@
COUNT .. 3;

3
SUM r

SUM .. 6;
0 6

I AVERAGE
SUM" 6; COUNT .. 3;

2.00000001)00QOOO
')013 1.--1 10CONTROLC 2.

i J002 (NHIL E TRUE.
... TRUE;

0003 2.--1 SUM : .. COUNT :- 0
COUNT .: = 0; SUM := 0;

0004 2.--1 REAOONCNUM8.
INPUT RECORD: "~7 32 21t 8B 1 o 2 -1 JO. ..

NUMB ,- 571

.&xecution OutlNt tor the Preee<UlI8 Progrq

0005 2.--1 ~ITEON(NUMB.
NUMB • 51;

51
~OOb 2.--1 WHILE NUMB , . -1 00

NUMB • 51; • • TRUE;

32 Zit 1'8 1 0 2 -1

a) TRACING CMAlNI:
0011 2.--' If COUNT • 0 THEN

CWNT • 1; • • fALSE;
0011 2.--' WR. TE • ·COUNT ., COUNT, ·SUM ., SU~t ·AVERAGE ., SUM/COUNT)
COUNT

COUNT • 1;
7

SUM
SUM • 2O~;

20<\
AVERAGE

SUM • 20~; COUNT • 1.
29.1~2'571~2851l

0013 2.--, 10CONTROL(Z)

0002 (WHILE TRUE)
• • TRUE,

0 0 -1
COUNT 2 SUM 0 AVERAGE 0

-1

-> TRACING CMAIN)I
0011 1.--1 WRITE ,·eMPTY GROUP·.
E/ltPTY GIlOOP

~ 5 6 1 -1
COUNT It SUM 22 AVOAGe 5.50000000000000

----------------...---_.-----------........-----------~~ ... ------~---------
(2)RUN ERROR MEAR COORDINATE ooo~, IN CMAIM)

000.15 SEC~DS IN EXECUTION

- READER EOF

"'~)(ECUT@N FLO'" SUMMA~

:J~ 1.--1 BEGIN
0001 I INTEGER SUM. COUNT. NUMB;
0002 I WHILE TRUE 00
0002 6.--1 BEGIN SUM:- COUNT :- 0;

0004 ER~OR @ ----i------~~~-;;~;;;~--
ERROR ---

0005
0006
0006
0010
0011
0011
0012
0013
0013
0013

I
I 16.--'

I
5.--1

1.--1 4.-- ,
5.--1

I 0.--' END

.,AI TEONI HUMS.;
NHILE NUMB - -1 DO

BEGIN SUM:- SUM + NUMB; COUNT:- COUNT + 1; READOHINUMB.;
END;

IF COUNT - 0 THEN
"RITEI-EMPTY GRUUP-J ELSE
.,IUTE (-COUNT -, COUNT, -SUM -, SUM, -'VERAGE -, SUM/COUllln;

IOCONTRQU 2.
END

@ -> TRACE OF ACTIVE SEGMENTS

-> SEGMENT NA~E: 'MAIN.

VALUES OF lOCAL VARIABLES:
SUM • 0 COUNT • 0 HUMI - -1

.. RITE (NUMBI

I
i

2
COUNT 3 SUM

51 32
COUNT 7 SUM

o " COUNT 2 SUM
-1

EllltPTY GPOUP
4 5

COUNT SUM

6

204

c

3
AYE RAGE

Z4
AVERAGE

-1
AYERAGE

6
22 AVERAGE

-1
2.00000COOOOOOOO

88
29.1428571428511

o

1
5.50000000000000.

1 o -1

i
-1 i

~
---_ .. _---------------------.------------------------~ RUN fPROR NEAR COOROINATE OO~. IN (MAIN)

000.03 SECONDS IN EXECUTION

a) TRACE OF ACTIVE SEGMENTS

-> SEGMENT NAME: (MAINI

VALUES OF lOCAL VARIA8lES'
SUM - 0 Cuu.T • 0

- READE ... EOF

HUM. • -1

4. COMPILER OUTJUrr

4.2. Details of the Tracing Output

The tracing features of ALGOL Wallow the programmer to watch the

statement-by-statement execution of his program. The tracing output

consists of four kinds of information for each statement:

a) The coordinate of the statement. (g)
b) The number of times that statement has been executed. 0)
c) The source statement itself. ~

d) A description of the values used in the statement. ~

There are special notations for procedure calls, for iterations and for

showing data cards.

4.2.1. Basic Notations

For each value fetched during the execution of a statement, the

fetch and store trace ($DEBUG,4) prints VARIABLE NAME = VALUE 0.
The store trace only ($DEBUG,3) suppresses all of theDe fetch values.

For each value stored (assigned), the tracing prints

VARIABLE NAME := VALUE (1). For each logical expression in an IF or

WHILE statement the value of the expression is printed as * = TRUE ~

or * = FALSE ~ . If tracing is suspended because the next statement

has already been executed m times (cf. Compiler Options for details of

$DEBUG,n(m)) or because the TRACE function is used, then three dots are

printed Q @ . The second and subsequent times through a WHILE or

FOR loop are indicated by the WHILE or FOR statement in parentheses ~ (20.
Whenever a new card is needed by READ or READON, the complete card image

is printed as INRJT RECORD: rr 80 characters It @. Note that in general

string values are printed with quotes on each end, but any quotes within

119

the string are not doubled. Reference values are printed as

Recordclass . #= ,where #= is a unique number (in order of allocation).

4.2.2. Procedure Call Notations

-+ XYZ;

~ TRAC ING XYZ;

(PARAMETER ASSIGNMENT)

Indicates a call to procedure XYZ ~.

Indicates that a new procedure is being

traced @.
A dummy statement indicating whatever

calculations must be performed in binding

the actual parameters to the formal

parameters @.
«PARAMETER IN xxx AT yyyy: trace»

FPARM : - APARM

FPARM r • - value

If the actual par~eter is an expression, then

this notation gives the name of the calling

routine, the coordinate of the call, and a

trace of the expression evaluation @ @.
Note that in the first example given, the

expression MAKE LONG (I) is actually another

procedure call, whose tracing terminates about

25 lines later. There is a second example @
on the next page.

Indicates the correspondence between the formal

parameter and the actual parameter @ .
In the case of VALUE and VALUE RESULT

parameters, this indicates the value assigned

to the local copy of the formal parameter @.
The local copy is then used inside the

procedure @.
Used as the name of an expression which

otherwise has no name @ .

120

xyz(••) value

4. COMPILER OUTRJT

Indicate~ the value returned from a function

procedure @ @. This notation is

preceded by a blank line to indicate a

return to tracing the calling procedure.

121

-) lRA'ING (-AIN. :
COOl 1.--1

• 23 15 3It5

• 12 It~ 61
"S 2~ 2.2
It5 29 16
It5 B -28

I 55 11 5

-> TRACUtG U.HGDIY:
0245 1.-7' 1

-> TRAClHG COp'f :
C08C 1.--1

(DC:C81 Q) 1.--1

008, 1.--1

(l083 1.--1

C081t 1.--1

OC85 1.--1

«lOa3 ®
o celt 2.--1

OCIS 2.-l

C083 G)
«lOa7 1.--1

0088 1.-,
a2lt6 1.--1

.> TRACING zelie:
C017 1.-1

~ C247 1.--1

C2lt8 1.--'
02-\9 1.--1

02!50 1.--1

TRACE (OJ

3 It 5
6 1
2 2
1 ()

2 8
o

RM := COPY(N.
-) Copy;

<PJRA~ETER ASSIGNMENT>
~ IN :- Nt i NI .. RIiQOE.32; IN':- RNOOE.3Z;
~p := IN
'5' IN' == RNOOE.32; P:- RNOOE.32;
\l.,I Q :.:: NUlL

Q := NULL;
WHILE p _a hUlL DO

p - RNODE.32; ... TRUE:
, :- RNCDECQ, VAlep ••
C = NULL; LINKCRNOOE.36':z NUll;
YAL(RHOOE.l6' := 5; Q:2 RHODe.36;

P := lIt-KCP)

P - RNDDE.JZ; VAL'.NOOE.3Z. • 5;

p ~ RNOOE.32; LIHK(RNODE.32'" RNODE.)3;
(WHILE P -= NULla

p .. RNODE.33; •• TRUE;
Q := RNODECQ, VALep ••

<D
, I- RMDOE.3l;

Q = RHODE.36; l(NK(RNODE.37):. RNODE.36; '.- RMaDE.)l;
VAL(RNODE.37) :- 5; Q:= RNODE.31;

P :- LIM"")
p a RNODE.33: LINKCRNODE.33J. NJLL; ,:- NUlLI

(WHILE P _a ~ULl)
P a NUlL; •• FALSE; ~,lD

REVERSE(QJ
-) REVERSE;

Q

Q - RNOOE.36;

COPY(•• ' = RNODE.l6; RM:a RNODE.36;
Q :- ZERO
-> ZERO;

RNODE' NUll, o.
Ll~KCRN~DE.38) := NULL: VAl(~NODE.38J:- 0;

ZER~ .. RHOOE.1S; Q:~ RNODE.l8;
IN := LE~TH(HI
-> LENGTH; lENGTHC ••):II 2; LN :.= 2:

lO :a lENbTHC 01
-> LENGT~; LENGTHC ••). 2: LO:- 2;

If L~ < LO THEN
IN .. 2: LO - 2;

REYERSE CRN)
-) REVERSE;

... FALSE;

Tracing Output ~,4(2»

VALCRHODE.33J • 5;

a> TRACING (MAlhi:
COOl 1.--'
0)28 1.--'

0329 1.--1

03)0 1.-1

~ OUI 1.--1
~ INPUT aECORD: ·9~ 999

0332 1.-1

@ -> TRACIHG LC~(j"PY:
C194 1.--1

~

a> TRACING MAKEtCNG:
001~ 1.--1

C016

Gon

0018

0019

0020

OOZl

0022

0023

0021t

0019

0026

-> TRACIN~
COllt

()016

0017

0018

0019

0020

1.--1

1.--1

1.--1

1.--1

1.--1

1.--1

1.--1

1.--1

1.--1

1.--1

MUELONG:
2.--1

2.--1

2.--1

2.--1

2.--1

2.--1

'hTFIE~oSllE := 3
81GM :a 10

81G'" :- 10;
HALF" :- 5

HALF .. :a 5:
"HILE TRUE DO
• = Ti(UE;

REAOOIH I, J)

I :- 99; J:- 999;
R :.aLONG"PY(MAKELONGIII, MAKElONG(JII
-> L'lNGMPY;

<PARAMETER ASSIGNMENT>
« PARAMETER IN (MAINI AT 033Z: - > "AKELONG;

<PARAMETER ASSIGNMENT> ~
INT :- I; I· 99; INT':- 99;

ANSWER :z RNOOE(NUlL, INT REM 8IGMI
lINKCRNOOE.1) :- NUll; lNT',. 99; BIGM - 10; VAleRNODE.11 sa 9; AN$Wea sa RNODE.1;

RZ :: ANSWER
ANSWER = RNODE.1; R2:- RNODE.l;

INT2 :a INT DIV 81GM
INT' • 99; 81GM = 10; INT2:- 9;

WHILE INT2,= 0 DO
INTZ • 9. . = TRUE;

R :a RNODE(NUlL, INT2 REM 8IGM)
LINK(RNUDE.Z) := hUll; HH2" 9; SIGN - Il; VAl(RHODE .• lI:- 9; ,,:- RNOOE.2;

ASSERT lINK(RZJ - NUll
RZ :: RHODE.1; lINK(RNDOE.1J:: NUll;

L1NK(Rl. :- R
R2 = RNUDE.l; R a RHDDE.2; lINKCRNODE.lt s- RNODE.2;

RZ := R
R a RHODE.2; RZ:= RNODE.2.

INTZ := INTZ' DIV BIGM
INT2 ,. 9': 81GM = 10; INTZ:- O.

(WHILE INT2,. Ot
INTZ • 0: •• FALSE;

ANSWER
ANSWER:: RNOOE.1;

MAKElONG(••) :: RHODE.I; »~
Nl :- ,; f:: RHUDE.l; N1· s= RN~DE.1;
« PARAMETER IN (MAINI AT OJ32S -> MAKElONG;

(PARAMETER ASSIGNMENT>
INT :- J; J ~ 999; INTI := 99q;

ANSWER :~ R~QDE(~ll, INT RE'" 8IG~1

llNKIRNODE.3) := NUll; INTI:: 999; 81GM = 10; VAl(R~aDE.11:- 9; ANSWER I. RNODE.);
RZ := ANSWER

ANSWER:: RNUDE.3; R2:= RNODE.3;
IHTZ := INT DlV BIG~
INT' = 999; BIG~ = 10; INT2:= 99;

~HllE INT2~ 0 DO
lNfl s 99; • = TRUE;

R :- RNUDE(NUll, INT2 RE~ BIGM)

Tracing Output continued

I\)

OCll

OCU

C023

OOl't

C019

Z.--I

Z.--I

2.--1

2.--1

LINKCRNOOE.4' := NULL; INTl z 99; 81G" z 10; YILCRNODE.~':. 9; R:- R"lDE.~;
ASSERT LINKe R2) :: ,'4ULL

P.2 :: RNOOF..3; LlNKfRNOOE.]t z NUll:
LI ~t< C R2) : = ~

R2 ~ RNuDE.l: R E RNODE.4; lINkCRNODE.3):- RNDDE.~;
R2 := R

R = ~~UOE.4; R2:- RNOOE.4:
INfl := INTZ 011 BJ~~
INf2 a 99: 8IG~. 10; INT2:- 9;

C~~ILE INT2 ~= 0)
INTZ • 9: • _ fRUE; ~

-> TRACING "A~ELONG:
0026 2.--1 ANS~ER

Q197

C198

0199

C200

0201

Q202

0202

020]

0207

0208

0209

0210

0211

-> TRACING
0015

C07S

0212

-> TRACIN~
0013

A~S~ER • RNODE.l;

"AKELONGC •• ' os RNODE.]; »
N2 :- t; ,. RNODE.3; H2':- RNODE.3;

1.-1 P :- Nl
Nl' a RHODE.I: P:= RN~DE.l:

1.--1 Q := N2
HZ' _ RNODE.3; Q:= RHOOE.].

1.--1 R :- RNOOECNUlL, 0)
l·lhKCRNiiJOE.6t :- NULL: VALCRNOOE.6J:= 0.; R:- lNODE •• ,

1.--1 ANSWER :- R
R :: RNODE.6; ANSWER:· RNilOE.6;

I.-I RIGHTPARTIAl :- R
R a RNOOE.6; R1GHTPARTIAl:- RNDDE.6;

1.--1 IF (VALCP. a or AND (lINKep. _ NUlLI) OR «(YALta.· O. AND CLINKCQJ. NULL •• THeN
P = RHODE.li YALCRNODE.1) - 9: Q = RNODE.3; YAL(INODE.) •• 9; •• FALSE.

1.-- I WHilE P ~- NULL DO

HIGH:
1.-1

1.--1

LOw:
1.-1

P • RHODE.l; • a TRUE;
1.--1 IF RIGHTPARTU .. _ NULL THEN

RIGHTPARTIAl - RNOOE.6; •• FALSE;
1.--1 R :- RIGHTPARTIAl

RlGHTPARTJAl • RNODE.6; R:. RNODE.6:
1.--1 C :a 0

C :a 0;
1.--) Q :: N2

NZ' & RNODE.); Q:= RNODE.3;
1.--1 WHilE Q,. NUll 00

Q - RHODE.3; • - TRUE;
1.--1 A :3 HIGHCYAl(P •• VALCQI)

-> HIGH;

<PAhA"ETER ASSIGNMENT>
'24'. «PARAMETER IN lONGMPY AT 0211:
~ VAL(RNOOE.3) = 9; »

N'-J"B :- N; f# .. 81; NUMB':= 81;
NUMB DIY BIG"

NUMB' 2 81; 5IG" 2 10:

1.--1 ® HIGHe ••) s 8: A:: 8;
B := LOWIYAl(p)*VALeYJJ
-) LOW:

(PAR4METER ASSIGNMENT>

P s RNODE.1; YALCRNBOE.lt • 9; Q • IUIOOE. II

« PARAMETER IN lONGMPY AT 0212: p:: RNODE.l; VAlIRNDDE.I). 9; Q. RNODE.3;

Tracing Output continued

4. COMPILER OUTFUT

4.3. Details of the Post-mortem Dump

The post-mortem dump begins with ~ TRACE OF ACTIVE SEGMENTS ~,

then the complete call chain is printed starting with the procedure which

was active at the point of termination and working back to its caller,

etc. For each procedure, the following information is printed:

a) The name of the procedure ~.. The outermost procedure is

called "(MAIN)" and a simple BEGIN block is named "(BLOCK)" .

b) The names and values of the local variables in the procedure ~.
Unini t ialized values print as "?" CD. Local copies of

parameters are named with primesC§). Strings are printed with

a single quote added on each end, but quotes within the string

are not doubled. At most eight values are printed from an array,

usually the first seven and last one ® @. Reference values

are printed as Recordclass.:IF ,where:IF is a unique number

(in order of allocation). The control variables in FOR statements

are all distinct even if they are spelled the same way. So if

I is used in many FOR statements, it will be dumped many times @ .
c) The name of the calling routine and the coordinate of the call @.

For NAME parameters, a procedure may be re-entered (environment

re-established) to evaluate the corresponding argument ® ~ .

125

\.292
0296
0297
(;2';8
0298
029"
OlC;S
029A

18.--1
I

8EGt~ I'UI):= I: W(It:a l/(Z.Nr..I; nC~, II := 1.0;
£hO:

1
I

lINP~OG(~U • 1, 2*NN. NU • 1, B. ~B. C. W, l. I~. c~~I;
IF E~P ~= 1 THE~ 0.--'

0.--1 0.--'
E,..O

(!) -) T~ACE OF ACTIVE SEGMENTS

-) SEGMENT NA!lltE: A.e

W~ITE(·E~~O~ hOe ., ERRt elSE
FOR 1:= C STEP 1 UNTIL Z*N - 1 DO

WFITEf"I~OEX ", INC It. • VALUE ", Wfltl

(!) A8 ~AS REENTERED FROM GMAT, NEAR CooROINATE 0072, TO ACCESS A PAR_METE~

w) SEGMENT NA~E: GMAT

VALUES Of lOCAL VARIABLES:
AI' • ? CI' • ?

GHAT WAS ACTIVATED FROM A8, NEAR COORDINATE 0242

a) SEGMENT N ... E: AB

G:> A8 "AS REENTERED FR~ TRI SOL V , NE_R COORDINATE 0033, TO ACeE SS A PAHMETEr<

a) S~GMENT 'lAM!: TRISOlV

V.l~ES OF lOCAL VARIABLeS:
FlO' • 1 FIE' a -1 TT
Q .. EttTY • ? I = ?

TRISOLV WAS ACTIVATED fROM DECOMPOSE, NEAR COORDINATE 0081

.) SEGJtE,.T NMEI DECOMPOSE

VALUES OF lOCAL VARIABLES:
8(nOM' • 0

J • ?
TOP' • 0

OECCNPOSE WAS ACTIVATEO fROM A8, _~AR COORDINATE 0242

® a) SEGIlENT NAME: AB

G) VALUES OF LOCAL VARIABLES:
01 • 7 OZ • ?

Aft WAS ACTIVATED FROM lINPROG, N~AR C~DINATE 0249

a) SEGMENT NAME: llNPROG

@ VAlUeS OF LOCAL VARIABLES:

6 """ 8

CD
~j' = 18

QCO' • ? QUI = 7
Qllt. z ? ~('H 1

t t4COI a 7 liB) = 7
0\ H41 .. 1 "'(5 t 1

w(O. = 7 III(U = ? ,,(4' = ? "(51 1
yeot • 1 yell 1
y(ttl a 7 Y(5t 1
v(O) .. ? vell ?

I a C

Qelt
Q(O.
H(Zt
H(I,)

!PICZt
w(o)
Y(2)
yeo)
vezi

Post-mortem DImrp

?

1
?

... ?
1
1

.. ?
1

;: ?
= ?

PV • ?

J • ?

®
Q(]I • ? QU. 7
HCll a ?
HC81 .. ?
WC31 a ?
weRt • ? Y13. '"' ?
v(at • 1 VUI .. ?

YCIt' • 1 V,~) :: '1
010,0' • 1 PU,O' z 1
P(4,OI :: 1 ~«~,C) s .,

Ille, a 0 I.Cl. 1
1"(4' • 4 lXC5 •• 5
DOCO. • a ROCI' • 1
aC(41 z ~ ~OC5J • 5
"l. .. 7 'jlJ :: 17
r;A~~A ,. ., ~~J • 1
J • 17 K • .,
T2 • 1 INfINITY" 7.237005'.75

@UNPROG "AS ACTIVUED FRO!1 C~AI~H, "tEAR COOROI"tATE 0297

=) SE~~E~T ~A~E: (~AINJ

• "AlUES OF LOCAL VAR IABLE:S:
t • q
J - .,
B8(0) ,. 1.000000
l\e'~J • 0
~IO) 0.05555555
W(4) = 0.05555555
C(OI .. 0
C(4) • 0.0009765625
PSICOI :: 0
PSIC41 :: O.~COOOOO
~CO,OI :: 1.000000
"C4,0) • 0
UC-3) :: -0.7500000
Uell • 0.2500COC
HdC) • 0
11\(4) • It
Z ,. .,
T :: 16 •

.. ,. 3
-.. K 4
B!H lJ .. 0
BIU51 • 0
WCll • ~.05555555
W(51 a 0.05555555
CUI • 0
C(5) .. -0.0009765625
PStll) ~ 0.1250000
PSI(S) :: 0.6250000
BI1,0) :: O.b66bb19
6(5,0) :: °
UC-2) :: -O.500000a
U(2) = 0.5000000
INC 11 1
IN(5) • 5
I • 7 •
J .. 7 •

• LAST VALUE OF CONTROL IDENTIFIER PRIOR TO NORMAL EXIT

Post-mortem Dump continued

v (b' = .,
pez,ol :: 1
P(~,~) :: 1 (2)
IXC21 z: 2
tUb' • 6
ROe21 • 2
poeb' • b
':'Li)HI\ s 1

1'41 s -1
L :a 0
PREVl .. -7.237005'+15

~IU = 7
ERR :: 0
BBe 2 t z C
88(6' .. 0
wezi 0.05555555
web, :: 0.CS555555
ce21 s 3.051758'-05
C(b' :: O.001~15771
PSI(2) ,. 0.2500000
PSI(6) :: 0.7500000
6(2,0. ~ 2.666665
tHb,O) = °
U(-l) :: -0.2500000
U(31 :: 0.75)0000
IfH 21 • 2
HUb) • b
I 2: -3 •
t = 17 •

veal :& .,

PC~.O) • .,
PU.81 a .,

UU) • 3
.-•• IX(26) • ?

ROU) - 3
'OfSl :& ~
BETA a 0
I·?
Tl • ?
ETA • 9.536143'-01

1·1
NNMl • 8
88(3) • 0
88(201 • ?
we3' • 0.C555555~
WllOI • ?
C(3t • -3.0~1758'-05
CelOt • 1
PSI(3, • 0.3750000
PSI(20) • ?
B(3,01 • 0.66666~5
8(10.20) • 1
UCO) • 0
UClot • .,
IHO) • 3
IH(20) • ?
1·8· ~
1 • 1 \:;:;I

127,1

GRAMMATICAL DESCRIPTION OF ALGOL W

by

R. Floyd

128

GRAMMATICAL DESCRIPTION

In the grammatical description of ALGOL W on the following pages,

Roman capital letters, such as AB C D, stand for themselves. A script

l~ttcr, ponsibly accented, 3 tand.;.:; ['or a d.efj!lf~d infini te class of symbol

strir.gs; for example, c9 , as definF~'d, stands for the class which includes

the symbols A, B, C, ... , Z, AA, AB, ... ,A9, BA, ... ,B9, ... Z9, AAA, ... ,
Z99, AAAA, ••• A Greek letter, such as A , stands for a given finite

set of characters.

The symbol means "or"; if a is defined as alc', this means that

a particular inscription is an a if it is a a or if it is a C .

* ra}* (TllE" notation a , or equivalently , means· any number includin~

z,_'ro) of inscriptions, one after another, each of which is an a. For

* example, {AlB} means A or B or AA or AB or BA or BB or AAA

or ... , or A ,where A means no inscription at all.

a+
The notation means any number (but at least one) of inscriptions,

00* one after another, each of which is an a. It abbreviates For

example, fA\B}+ means A or B or AA or or BB or AAA, etc.

The notation [a] means an optional occurrence of a ; it abbreviates

falA} .

The notation a'e means a or can or aGCGa, etc; it abbreviates

afBl}* .

The notation a 1a means a and/or e ; it abbreviates a\e\ae.

The curly brackets {} are used simply as parentheses to show the

scope of the above operators.

All other characters, such as / - , () / < etc., stand for themselves,

including * and + when they are not raised.

129

Descriptive
Name

letter

digit

identifier

symbol

constant

function value

~
expression

0 simple statement

statement

block

declaration

type

procedure heading

program

The Grammar of a Simple Subset of ALGOL W

Symbol

).,

0

J

a

C

a,;

e

SI

S

B

I)

1

"
P

Definition

A\B\C\D\E\ .•• \X\y\Z

01112131 ... \8\9
A fA\O}*

Any symbol on the keypunch, except the double quote

() +[.6 *] I "a +"

c9((e+:-)]
I. I

I
[-J [J,C\:'I\ (t)}**{*l/l {+\-l {<I<=\=\>=\>\ -,=}

c9:=e\~ (t+:-)] \GO TO J 'B
S' 'IF e THEN SIIF e THEN S' ELSE S\FOR J:=e UNTIL e DO S

* * BEGIN (I);} {S; \c9: } S END

~ * * r c9 ,l1 PROCEDURE J(; {tl BEGIN{;Q;} [5; I J:} e END)

INTEGER I BEAL I LOGICAL I STRING (C)
-+-1

J(1 t VALUE I PROCEDURE} J, ;)

B.

Descriptive
Name

letter

digit

identifier

variable

symbol

~
constant

!-J

function value

simple expression

simple expression
or relation

- expression

argument

simple statement

empty

statement

~bol

A

5

J

V

a

e

'J

e"

e,'

e

a

S'

A

S

The Grarnrn.ar of ALGDL Vol

Definition

A!B!cIDIEI ···IXlyIZ

01112131·'· 1819

AlA IOI_}*

(JIJ(e) IJ(~)}[(eIC)]

Any character on the keypunch, except the double quote.

r (6 + [.5 * JI .o+} ~ t' [+ 1-] 0 +) l[1](L J I TRUE I FALSE

141= (5 1 A I B I c I DIE IF} +1 " (a III tI } + tI , HULL

J[(n+:))
==~==========~========~I========~,=============+I------

[+ 1-] (-,](ABS I LONG/ SHORT}*(V Ie I'J I (e)} (** I SHL\ SHR}(*1 flDlV! HEr.lIAND 1 [+ I-loR}

e" I e" «I<=I=I>=I>~=}e," I e" IS J

e'lIF e THEN e ELSE elCASE e OF (e:--;)

elsl J[«(el*}~)]
f1f:=}+elao TO JIJ[(O' ,)]IAIB

The empty statement; no character at all, or a space.

S I 1 IF e THEN s I IF e THEN s' ELSE S I CASE e. OF BEGIN g-t; END

IWHILE e DO SIFOR ~:=e f[STEP e.] UNTIL el(,t}*}no s

Descriptive
Name

block

declaration

type

procedure heading

program

B

:r

DefiDltion

* * BE GIN f ~ ; } f S ; 1 J :} S END

1 ~ 11 ARRAY ~ (e::e I,) 1 PHOCEDURE W; S
* * ~I 11 PROCEDURE W; [tIBEGIN (~;} (s; IJ:} e END} I RECORD J(1 J, ;)

INTEGER I [LONG] [PEAL I COMPLEX} I LOGICAL I BITS[(32)] I STRING[(C)] I REFERENCE (t)
~ -;:;-t- 7.-t- ' J[([j [VALUE][RESULT]I[1] PROCEDURE}J ,11 ARRAY J ,(* ,);)]

is \.1l}[.]

\

The Operators and Functions Or' ALGOL \N, iheir Formats, Meanings

and Type Constraints

Use of Symbols

e. = any ALGOL W expression.
1

a. = value of expression t ..
1 1

K. = kind of data represented by Ct. corresponding to e~pression e ...
111

The kinds of data are~

1. N = numeric

2. L logical

3. S = string

4. B = bits

5. R reference

d
1
. = domain of a. when k. = N.

1 1

The doma ins are:

1. I = integer

2. R = real

:5 • C = complex

They are ordered as follows: I C ~ C C.

Pl. = precision of a. when k. = N .•
1 1

They are ordered as follows: S < L.

If d. = I, then p. = L. I.e., integers are converted to long real.
1 1

Format

tl + e2

e
l

- e2

el *e2

ell t2

el DIV t2

tl REM t2

ABS el

LONG e.l
SHORT tl

Kinds of .Arg\ilIlents Domains of Numeric
t·leaning

0'1 - 0'2

0'1 x 0'2

0'1 / Q'2

C'L
2

Q'l

0'1

-0'1

TRUNCATE (O'l/(2)

(tl- (0'1 DIV (t2) * a2 ,

the remainder of
tl DIY e2

lal '

and Results Arguments and Results

N + N -+ N d
l
+d

2
-+ max(d

l
, d

2
)

N - If -+ N d1-d2 -+ max(dl ,d2)

N * N -+ M d l *d2 -+max(dl ,d2)

N/N -+ N d1/d2 -+ max(d1,d2,R)

N**N -+ N d
l

**1 -+ max (~, R)

+ N -+ N +d
1

-+ d
l

-N -+ N -d1 -+ dl

I DIV I -+ I

I REM I -+ I

LONG N ~ N

SHORT N ~ N

ABS dl ~min(dl,R)

LONG dl ~max(dl,R)

SHORr d
l
~ d

l

Frecision of numeric:
Arguments and Results

P1+P2 -+ min(P1,P2)

P1-P2 -+ min(Pl ,P2)

P1*P2 ~ L

Pl/P2 -+min(Pi ,P2)

Pi **L -+ Pl
+P

l
~ P

l
-P1-+·P1

ABS Pi ~ Pl

LONG Pl -+ L where Pl=s or di=I

SHORT Pi ~S where Pl=L and dl~

Format Meaning

&1 OR e2 0'1 V 0'2

£1 AND £.2 Ci1 " ()'2

-, tl Nor a
1

£1 = £2 0'1 = 0'2

£1 -,= &2 0'1 ='= 0'2

£.1 < £2 a l < 0'2

.~
\Jl

£1 <= .t2 0'1 ~ 0'2

&1 >= t2 0'1 ::: 0'2

£1 > &2 O'l > cx2

tl IS 82
a

l
belongs to the

record class ~2

tl SHL &2 a
l

shifted left

a
2

places

£1 SHR £2 0'1 shifted right

a
2

places

VI (&2 Jt3) characters a
2 through

a 2 + (13 - 1 of a l

Kinds of Arguments
and Results

L OR L ~ L
B OR B -+ B

LANDL-+L
BANDB-+B

k1 = k2 ~L(where ~=k2)

~ -,= k2 -+ L(where k1=k2)

N<N-+L
S<S~L

N<=N-+L
S <= S -+ L

N>=N-+L
N>=S-+L

N>N-+L
S>S-+L

R IS ~2 ~ L

BSHLN~B

B SHR N ~B

s(NIN) ~ S

Domains of ~Iwneric
Arguments and Results

any

any

d 1, d2 <.=. R

d1,d2 ~ R

d1 ,d2 ~ R

d1,d2 ~ R

Precision of Numeric

I Arguments and Results

1-3
H n
~
t::J
t:r:j
.~

!:d
H

~
H

~
any

any

any

any

any

any

Format Meaning

IF £1 THEN t2 ELSE e3 if 0'1 then 0'2'

othenTise GY
3

CASE e of (e
l

, ••• ,e) a. (1 < 0' < n) o n GY - 0- .
o

Kinds of Arguments
and Results

IF L THEN k2 ELSE ~ ~ k

where ~ = ~ = k

CASE N OF (~, k
2

, ••• , k
n

)

~k where

k = k
n

Domains of Numerir.
Arguments and Results

IF L THEN d
1

ELSE. d
2

-+ max(d
l
,d

2
)

CASE L OF (d
i
,d2, ••• ,d

n
)

~ maX(d
i
,d2,···,dn)

Precision of Nnmf?r:ic
Arguments and hesult~

IF L THEN Pi ELSE P2
~ min(P1,P2)

CASE L OF (P1, ••• ,Pn)

~ mine Pi' • • • ,Pn)

All the following functions have the format F(tl)1 where F is the function name.

We shall omit reference to the format, accordingly.

Meaning
I

Function Kinds Domains Precision r3
H
(")

TRUNCATE The integer i, with the same sign ~
(1:3 ai' such that t::1

trJ

10'1 f - 1 < 1 i 1 ~ Ja1 1 ~
~
H

ENTIER The integer i such that rT-rlN R ~ I Any ~
H

0'1- 1 < i ~ 0'1 g

ROUND The integer i, with the same sign

~ 0'1' such that
-..J

10'1 i - 1/2 < 1 i 1 ~ 10'1' + 1/2

EXPONENT The largest integer i such that N - N R - I Any

i ::; lOg16(IO'1D + 1

or 0 if 0'1 =+ 0

ROUNDTOREAL 0'1 N ,-N R - R L- S

REALPART The real part of a1) N - N C ... R, Any - S*
IMAGPART The imaginary part of 0'1

1 IMAG 0'1 * /-1 N -N d
l

..... C Any ~ S*

(d1 S R)

* Note: An asteri.sk on a short precision-result means that prefixing the letters~·LONG to the function
name yields a long precision result.

Functi0n

SQRT

EXP

LN

LOG

SIN

COS

I-' ARCTAN \.>J
co

TIME

ODD

BrrSTRING

Meaning

~, for 0'1 > C

1oge (a
l

) , for 0'1 > 0

loglO (0'1)' for 0'1 > 0

sin(O'l), for 10'1 1 < 823550

cos(al), for 10'11 < 823550
.;..1) tan (0'1' in the range

(- n/2, n!2)

elapsed time, in units of 1/100
minute if a l = 0, otherwise in

units of 1/60 second.

0'1 is an odd number

The sequence of bits which
represents 0'1 in binary.

See manuals for details.

Kinds Domains Precision

N~N d
1
~ R Any ~ S*

(d1 S R)

I~L

I~B

I
I

I

Function

NUMBER

DECODE

CODE

BASE 10

LONGBASE10

BASE 16

LONGBASE16

INTBASEIO

INTBASE16

Meaning Kinds

The integer which 0'1 represents B ~ I
in binary.

The number which is used as a code 8(1) ~ I
for the character 0'1. (See page 71.)

The character for which 0'1 is used I ~ 8 (1)
as a code. (See page 71.)

A string of the form b+12+1234567 N ~ 8(12)
representing 0'1 as a POwer of ten

times a fraction. (b represents a
blank space).

As above, for ~1~123456789012345

A string of the form b~12~123456
representing 0'1 as a power of

sixteen times a fraction, both in
hexadec ima1.

As above, for b~1~12345678901234

A string of the form b+~234567890
representing 0'1 in decimal.

A string of the form bbbb12345678
representing 0'1 in hexadec~al,
using two's complement notation.

N ~ S(20)

N ~ 8(12)

N ~ 8(20)

I ~ S(12)

r ~ S(12)

Domains

See also pages 56-59 for READ, READ ON, READCABD, WRITE, WRrI'EON, rOCONTROL.

See also pages 64-66 for INTFIELDSlZE, MAXINTEGER, EPSILON, MAXREAL, PI.

Precision

Any

Any

Any

Any

Abend messages .•..••..•..
Actual parameter ••..•••..
Arithmetic expression ••..
Array declaration ••• ~ ••.•
ASSERT statement •••.••...
Assignment compatibility •
Assignment statement ..•••
Binding of identifiers •••
Bit expression ..•....•..•
Block .•....•..•.•.......•
Boolean expression ..•....
Built-in functions .•...••
Call, procedure 45,
CASE expression •.•.•.....
CASE statement .••....•.••
Character encoding .•.•.•.
C orrrrnent ••••••.•..•.•.••••
Compiler options .•.•.....
Conditional expression .•.
Constant s•.••.•••
Constants for input .•...•
Control cards•. 103,
Control, Ilo
Conversions .•.•....•. 35,
Coordinat"es .•.•....•.••.•
Copy rule•..•.•..•
Data t:ypes
Deck setup ..•....•.•.•••.
Declarat ion .•....•.•..•••
Double preCision

representation ..•...•.
Error messages ••.•..•....
Exceptional conditions .•.
Expres sion .•....•.••••.•.
Field designator ••..•.•..
Floating-point

representation .•.•..••
FOR statement· •••.••••••••
Formal parameter ••..•.••.
Fortran linkage ••.•..•.•.
Function declaration .•.••
Function designator •...••
GOTO statement ••....•.•••
Identifier ••..•.•..•.••••
IF express ion •••.•..•..••
IF statement .•.•..•.•.•••
Incompatibility, assign ••
Input/output ••.•..••••.••
Integer representation •••
I ex:: ONTR OL ..•.........•.••

Index

87
46
32
22
49
44
43
14
38
J+2
37
&J
31
30
50
71
10

104
30
16
54

104
58

133
111

45
16

103
20

97
73
65
28
28

93
51
24

l07ff
23
31
47
13
29
48
44
54
90
58

140

It erat i ve st at ement s .•.•..
Keywords •.•..•.•.......••.
Label
Logical expression ••..•.•.
Name parameter •.•.•..•.•.•
New line ••..•••.•..•.•.•.•
New page •••......•......••
Normalization ••.•....•..••
Nwnbers ...•.••...•....•...
Number representations •••.
Object decks ••..•.•..•.•..
Operators ...•••.•. ll, 32,
Operator precedence••
Options, compiler •.•.••.••
Order of evaluation ••.•.•.
Overflow ...•..•... 65, 92,
Page ej ect ••.•..•.•.•••.••
Page limit ••..•.••••.•••••
Paramet er ••.•..•.••.•.•. c •

Parameters, compiler .•••.•
Precedence of operators ••.
Predeclared identifiers •••
Procedure declaration •••••
PROCEDURE statement .••••••
READ ••••••••••••••••••••••
READCABD ••••••••••••••••••
READON ••.•.•..•.•.••.•.•••
Record class declaration ••
Reference declaration •.•••
Reference expression •.•.•.
Reserved words •.•..•.•.•••
Round-off error ••.•....•.•
Simple variable .•••.••.•.•
Standard functions •.••••••
Standard procedures •••..••
Statement ••.•.•..•.•....••
String expression ••....•..
Subarray .•.•....••.•.••••.
Substring ••.••.•.•.•..•.•.
Syntactic entities •.•.•.•.
Time lirni t
Transfer functions •.•.••.•
Types of variables .•.•.•••
Underflow .•..••..•.... 65,
Variables
WHILE statement ••••..•.•••
vlRITE .•.......•.•....•.•..
WRITEON .••••.•..•....•••.•

51
11
42
37
45
58
58
94
17
88

107ff
133

41
10l+

41
99
58

103
45

104
41
6\,
23
45
56
57
56
28
21
40
11
96
20
&J
53
42
39
47
40
12

103
60
16
99
16
53
57
57

Words with special meanings in ALGOL W

.ABS ••••••••••• 35
1~GOL •••••••• 103
ALGOL ••••.•••• 25
liND ••.•••• 38, 39
ARCTAN •••••••• 64
J\RRAY ••••••••• 22
ASSERT ••.••••• 49
BASE10 •••••••• 62
BASE16 •••••••• 62
BEGIN ••••••••• 42
BITS •••••••••• 20
BITSTRING ••••• 61
CASE •••••••••• 50
CODE .••••••••• 61
C 01-1f:;fFJf11 ••••••• 10
COMPLEX ••••••• 20
COS ••••••••••• 63
$DEBUG ••.••••• 104
DECODE •••••••• 61
DIV 34
DIVZERO ••••••• 65
DO •••••••••••• 52
$DUMP* •••.•••• 104
ELSE ••.•.••••• 48
:E:ND ••••••••••• 42
ENTlER .•••••.• 60
%EOF •••••••••• 103
EPSILON ••••••• 65
EXC EPrION ••••• 65
EXP ••••••••••• 63
EXPERR •••••••• 65
EXPONENT •••••• 60
FALSE ••••.•••• 18
FOR ••••••••••• 52
FORTRAN ••••••• 25
GO ••• 0 • • • • • • • • 47
GOTO •••••.•••• 47
IF •••••••••••• 48
JJ.1A.G •••••••••• 61
JJ.1A.GPART •••••• 60
INTBASEI0 ••••• 62
INTBASE16 ••••• 62
llrrDIVZERO •••• 65
INTEGER ••••••• 20
INTFIELDSlZE •• 64
INTOVFL ••••••• 65
IOCONTROL ••••• 58
IS •••••••••••• 38
$LIST ••••••••• 104

rn• 63
rnLOGERR •••••• 65
LOG ••••••••••• 63
LOGICAL ••••••• 20
LONG •••••.•••• 36
MARGIN= ••••••• 103.2
MAXINTEGER .••• 64
MAXREAL ••••••• 65
$NOCHEX:!K •••••• 104
$NOLIST ••••••• 104
NOLL ••••.••••• 20
NUMBER ••..•••• 61
%OBJECT ••••••• 108
ODD ••••••••••• 61
OF ••.••••.•••• 50
OR •••••••• 38, 39
O\lFL ••••••.••• 65
PAGES= •••••••• 103.1
PI •••••••••••• 65
PROCEDURE • 23, 47
REAL •••••••••• 20
REALP ART •••••• 60
RECORD •••••••• 28
READ •••••••••• 56
READCARD •••••• 57
READON •••••••• 56
REFERENC E ••••• 21
REM ••••••••••• 35
RESULT •••• 24, 46
ROUND ••••.•••• 60
ROUNDTOREAL ••• 60
SIIL ••••••••••• 39
SHORT ••••••••• 36
SHR ••••••••••• 39
SIN ••••••••••• 63
SINCOSERR ••••• 65
SIZE= ••••••••• 103.2
SQRT •••••••••• 62
SQRTERR ••••••• 65
$STACK •••••••• 104
STEP •••••••••• 52
STRING •••••••• 21
$SYNTAX ••••••• 104
THrn • 0 • • • • • • • • 48
$TITLE •••••••• 104
TIME ••.•••••••• 64
TIME= ••••••••• 103.1
TO •••••••••••• 47
TRACE ••••••••• 59

141

TRUNCATE •••••• 60
TRUE •••••••••• 18
UFL ••••••••••• 65
UNTIL ••••••••• 52
VALUE ••••• 24, 46
W1ITLE ••••••••• 53
WRITE •••••••• .57
WRITEON ••••••• 57
XCPACTION ••••• 65
XCPLIMIT •••••• 65
XCPMARK ••••••• 65
XCPMSG "....... 65
XCPNo'rED •••••• 65

	000
	001
	002
	003
	004
	005
	006.0
	006.1
	007.0
	007.1
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072.0
	072.1
	073
	074
	075.0
	075.1
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088.0
	088.1
	089.0
	089.1
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102.0
	102.1
	103.0
	103.1
	103.2
	104
	105.0
	105.1
	105.2
	105.3
	106.0
	106.1
	107
	108
	109
	110.0
	110.1
	110.2
	110.3
	111
	112
	113.0
	113.1
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127.0
	127.1
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141

